cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181540 a(n) = Sum_{k=0..n} gcd(n,k)*phi(k).

Original entry on oeis.org

0, 1, 3, 8, 13, 26, 29, 54, 59, 84, 93, 142, 139, 202, 195, 244, 259, 352, 327, 444, 433, 508, 505, 656, 639, 776, 719, 866, 889, 1054, 1057, 1208, 1151, 1332, 1255, 1624, 1575, 1728, 1579, 1886, 2011, 2130, 2159, 2348, 2329, 2716, 2329
Offset: 0

Views

Author

Peter Luschny, Oct 29 2010

Keywords

Comments

Row sums of triangle A181538.

Crossrefs

Cf. A181538.

Programs

  • Maple
    A181540 := n -> add(igcd(n,k)*numtheory[phi](k),k=0..n);
  • Mathematica
    Table[Sum[GCD[n,k]EulerPhi[k],{k,0,n}],{n,0,50}] (* Harvey P. Dale, Jul 12 2020 *)
  • PARI
    a(n) = sum(k=1, n, gcd(n, k)*eulerphi(k)); \\ Michel Marcus, May 18 2018

A181552 T(n,k) = gcd(n,k) A181549(k), triangle read by rows.

Original entry on oeis.org

1, 1, 6, 1, 3, 12, 1, 6, 4, 20, 1, 3, 4, 5, 30, 1, 6, 12, 10, 6, 72, 1, 3, 4, 5, 6, 12, 56, 1, 6, 4, 20, 6, 24, 8, 80, 1, 3, 12, 5, 6, 36, 8, 10, 99, 1, 6, 4, 10, 30, 24, 8, 20, 11, 180, 1, 3, 4, 5, 6, 12, 8, 10, 11, 18, 132, 1, 6, 12, 20, 6, 72, 8, 40, 33, 36, 12, 240
Offset: 1

Views

Author

Peter Luschny, Oct 30 2010

Keywords

Comments

A181549(n) = sum{k|n} k mu_2(n/k) is a variant of Euler's phi function relative to the Moebius function of order 2.

Examples

			1,
1,6,
1,3,12,
1,6,.4,20,
1,3,.4,.5,30,
1,6,12,10,.6,72,
1,3,.4,.5,.6,12,56,
1,6,.4,20,.6,24,.8,80,
		

Crossrefs

Cf. A130212, A181538, row sums of triangle is A181553.

Programs

  • Maple
    A181552 := (n,k) -> igcd(n,k)*A181549(k);
  • Mathematica
    mu2[1] = 1; mu2[n_] := Sum[Boole[Divisible[n, d^2]]*MoebiusMu[n/d^2]*MoebiusMu[n/d], {d, Divisors[n]}]; A181549[n_] := Sum[k*mu2[n/k], {k, Divisors[n]}]; t[n_, k_] := GCD[n, k]*A181549[k]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
Showing 1-2 of 2 results.