A181553 Coefficient of x^n in (x^2 + 98*x + 1)^n.
1, 98, 9606, 941780, 92352070, 9058034748, 888610349724, 87192397723368, 8557276143987270, 840005101192014380, 82474083957903064756, 8099197733721011526168, 795527368821049695145756, 78154959591300863484042200, 7679729103551077344613236600, 754784236214755050742369782480, 74197094919316919158188333048390
Offset: 0
Keywords
Examples
For n = 2 we have a(2) = coefficient of x^2 in (x^2 + 98x + 1)^2 = 9606.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..495
- Zhi-Wei Sun, One more conjectural series for 1/pi, a message to Number Theory List, Jan. 29, 2011.
- Zhi-Wei Sun, On sums related to central binomial and trinomial coefficients, arXiv:1101.0600 [math.NT], 2014.
- Zhi-Wei Sun, Open Conjectures on Congruences, arXiv:0911.5665 [math.NT], 2009.
Programs
-
Magma
m:=20; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(9600*x^2 - 196*x + 1) )); // G. C. Greubel, Nov 10 2018 -
Mathematica
A[n_] := If[n > 0, Coefficient[(x^2 + 98x + 1)^n, x^n], 1]; Table[A[n], {n, 0, 20}]
-
PARI
x='x+O('x^20); Vec((9600*x^2 - 196*x + 1)^(-1/2)) \\ G. C. Greubel, Mar 06 2017
Formula
a(n) = Sum_{k = 0..floor(n/2)} binomial(n, 2*k)*binomial(2*k, k) *(98)^{n - 2*k}.
G.f.: (9600*x^2 - 196*x + 1)^(-1/2).
Comments