cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181602 Primes p such that p-1 is a semiprime and p+2 is prime or prime squared.

Original entry on oeis.org

5, 7, 11, 23, 47, 59, 107, 167, 179, 227, 347, 359, 839, 1019, 1319, 1367, 1487, 1619, 2027, 2207, 2999, 3119, 3167, 3467, 4127, 4259, 4547, 4787, 4799, 5099, 5639, 5879, 6659, 6779, 6827, 7559, 8819, 10007, 10607, 11699, 12107, 12539, 14387, 14867
Offset: 1

Views

Author

Giovanni Teofilatto, Nov 01 2010

Keywords

Comments

Except for the second term, a(n)+1 is divisible by 6.
[Proof: a(n)=p is a prime, with p-1=q*r and two primes q<=r by definition. Omitting the special case p=2, p is odd, p+1 is even, so p+1=q*r+2 = 2(1+q*r/2). To show that p+1 is divisible by 6 we show that it is divisible by 2 and by 3; divisibility by 2 has already been shown in the previous sentence. (1+q*r/2 must be integer, so q*r/2 must be integer, so the smaller prime q of the semiprime must be q=2, so p=2*r+1. This shows that p=a(n) are a subset of A005383.) First subcase of the definition is that p+2 is also prime. Then p is a smaller twin prime and by a comment in A003627, p+1 is divisible by 3. Second subcase of the definition is that p+2 = s^2 with s a prime. s can be 3*k+1 or 3*k+2 --p=7 is the exception-- which leads to s^2 = 9*k^2+6*k+1 or s^2=9*k^2+12*k+4, so p+1 = 9*k^2+6*k or 9*k^2+12*k+3, and in both cases p+1 is divisible by 3.]
In consequence, except for the first three terms, first differences a(n+1)-a(n) are also divisible by 6.

Crossrefs

Cf. A001358 (semiprimes), A001248 (squares of primes).

Programs

  • Magma
    [ p: p in PrimesInInterval(3,15000) | &+[ k[2]: k in Factorization(p-1) ] eq 2 and (IsPrime(p+2) or (q^2 eq p+2 and IsPrime(q) where q is Isqrt(p+2))) ]; // Klaus Brockhaus, Nov 03 2010
  • Mathematica
    semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; fQ[n_] := Block[{fi = FactorInteger@n}, Length@ fi == 1 && fi[[1, 2]] == 1 || fi[[1, 2]] == 2]; Select[ Prime@ Range@ 1293, semiPrimeQ[ # - 1] && fQ[ # + 2] &] (* Robert G. Wilson v, Nov 06 2010 *)
    Select[Prime[Range[2000]],PrimeOmega[#-1]==2&&Or@@PrimeQ[{#+2, Sqrt[ #+2]}]&] (* Harvey P. Dale, Aug 12 2012 *)

Extensions

Corrected (29 removed) and extended by Klaus Brockhaus, Robert G. Wilson v and R. J. Mathar, Nov 03 2010