A181611 Position of rightmost zero in 2^n (including leading zero).
1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 4, 5, 5, 5, 2, 6, 6, 5, 5, 1, 1, 8, 8, 4, 9, 9, 3, 8, 10, 10, 10, 11, 11, 11, 12, 4, 12, 11, 8, 1, 1, 5, 5, 12, 12, 3, 15, 7, 16, 3, 3, 7, 8, 8, 8, 12, 7, 7, 10, 1, 1, 7, 4, 4, 21, 13, 7, 4, 4, 22, 6, 6, 4, 23, 24, 13, 2, 4, 25, 1, 1, 11, 6, 26, 3, 2, 12, 12, 12, 11, 14, 14, 23, 3, 3, 4, 4, 4, 3, 1, 1, 2, 2, 2, 6, 6, 8, 2, 2, 2, 3, 3, 3, 17, 2, 5, 6, 6, 6
Offset: 1
Examples
2^10 = 1024, the rightmost zero is in position 2, so a(10) = 2. Another example, 2^5 = 32, so we need to add a leading zero: 032, thus the rightmost zero will be in position 2, and a(5) = 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A181611 := proc(n) local dgs,i ; dgs := convert(2^n, base, 10) ; i := ListTools[Search](0, dgs) ; if i > 0 then i-1; else nops(dgs) ; end if ; end proc: # R. J. Mathar, Jan 30 2011 a:= proc(n) local m, i; m:= 2^n; for i from 0 while m>0 and irem(m, 10, 'm')<>0 do od; i end: seq(a(n), n=1..121); # Alois P. Heinz, Feb 05 2011
-
Mathematica
Table[Position[Reverse[Prepend[IntegerDigits[2^n], 0]], 0][[1]][[1]] - 1, {n, 121}]
-
PARI
a(n) = {my(d = Vecrev(digits(2^n))); for (i=1, #d, if (!d[i], return (i-1));); #d;} \\ Michel Marcus, Jan 01 2016
Comments