cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181629 Positive integers k = p_1^{r_1} ... p_n^{r_n} such that sum_{i=1..n} p_i^{-r_i} >= 1 (Non-Hyperbolic Integers).

Original entry on oeis.org

1, 30, 210, 330, 390, 462, 510, 546, 570, 690, 714, 798, 858, 870, 930, 966, 1050, 1110, 1218, 1230, 1290, 1302, 1410, 1470, 1554, 1590, 1722, 1770, 1830, 2010, 2130, 2190, 2310, 2370, 2490, 2670, 2730, 2910, 3030, 3090, 3210, 3270, 3390, 3570, 3630, 3810
Offset: 1

Views

Author

Roberto E. Martinez II, Nov 02 2010, Nov 05 2010

Keywords

Comments

First odd term greater than 1 is 3234846615. - Robert G. Wilson v, Nov 04 2010
Also numbers n such that A028236(n)/n >= 1. - Klaus Brockhaus, Nov 06 2010

Examples

			a(2) = 30, since 30 = 2*3*5 and 1/2 + 1/3 + 1/5 = 31/30 >= 1.
		

Crossrefs

Cf. A028236 (if n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j^k_j). - Klaus Brockhaus, Nov 06 2010

Programs

  • Magma
    [1] cat [ k: k in [2..4000] | &+[ f[i, 1]^-f[i, 2]: i in [1..#f] ] ge 1 where f is Factorization(k) ]; // Klaus Brockhaus, Nov 06 2010
  • Mathematica
    DeleteCases[ Table[k; A = FactorInteger[k]; If[Sum[1/A[[j]][[1]]^A[[j]][[2]], {j, 1, Length[A]}] >= 1, k, 0], {k, 1, 3900}], 0]
    fQ[n_] := Block[{fi = Transpose@ FactorInteger@ n}, Plus @@ (1/(First@fi ^ Last@fi)) >= 1]; Select[Range@ 3900, fQ] (* Robert G. Wilson v, Nov 04 2010 *)