A181635 Expansion of 36*x^2*(1+36*x^2-6*x) / ((36*x^2+6*x+1)*(1-6*x)^2).
0, 36, 0, 1296, 15552, 46656, 559872, 5038848, 20155392, 181398528, 1451188224, 6530347008, 52242776064, 391820820480, 1880739938304, 14105549537280, 101559956668416, 507799783342080, 3656158440062976, 25593109080440832, 131621703842267136, 921351926895869952, 6317841784428822528, 33168669368251318272, 227442304239437611008
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,0,216,-1296).
Programs
-
Maple
A181635 := proc(n) res := 0 ; for q from 1 to n-1 do a := n-q ; if modp(a,3) = modp(q,3) then res := res+6^n; end if; end do: res; end proc: seq(A181635(n),n=1..40) ; # R. J. Mathar, May 13 2016
-
Mathematica
LinearRecurrence[{6,0,216,-1296},{0,36,0,1296},40] (* Harvey P. Dale, Jul 18 2024 *)
-
PARI
a(n) = round((-2^n*3^(1+n)+(-3-I*sqrt(3))*(-3-3*I*sqrt(3))^n-3*(-3+3*I*sqrt(3))^n+I*sqrt(3)*(-3+3*I*sqrt(3))^n+2^n*3^(1+n)*n)/9) \\ Colin Barker, May 14 2016
Formula
a(n) = Sum_{q>0, q'>0, q+q'=n, q==q' (mod 3)} 6^(q+q').
G.f.: 36*x^2*(1+36*x^2-6*x) / ( (36*x^2+6*x+1)*(1-6*x)^2 ). - Joerg Arndt, Mar 16 2013
From Colin Barker, May 14 2016: (Start)
a(n) = (-2^n*3^(1+n)+(-3-i*sqrt(3))*(-3-3*i*sqrt(3))^n-3*(-3+3*i*sqrt(3))^n+i*sqrt(3)*(-3+3*i*sqrt(3))^n+2^n*3^(1+n)*n)/9 where i is the imaginary unit. - Colin Barker, May 14 2016
a(n) = 6*a(n-1)+216*a(n-3)-1296*a(n-4) for n>4.
(End)
E.g.f.: 1 + ((18*x - 3)*exp(9*x) - 4*sqrt(3)*cos(Pi/6-3*sqrt(3)*x))*exp(-3*x)/9. - Ilya Gutkovskiy, May 14 2016
a(n) = 6^n*A008611(n-2). - R. J. Mathar, May 14 2016
Extensions
Edited by R. J. Mathar, May 13 2016
Name changed by Colin Barker, May 14 2016
Comments