A181648 Expansion of x^(-2/3) * psi(x) * c(x^2) / 3 in powers of x where psi() is a Ramanujan theta function and c() is a cubic AGM theta function.
1, 1, 1, 2, 2, 3, 1, 2, 3, 2, 4, 3, 3, 3, 4, 3, 2, 2, 6, 5, 3, 5, 3, 5, 4, 5, 3, 4, 5, 4, 5, 4, 5, 7, 6, 7, 3, 3, 7, 4, 8, 4, 4, 5, 7, 6, 5, 6, 7, 8, 6, 4, 6, 9, 6, 8, 6, 4, 4, 4, 11, 7, 4, 11, 4, 9, 6, 7, 8, 7, 11, 5, 5, 8, 8, 10, 6, 5, 10, 6, 8, 6, 7, 7, 8
Offset: 0
Keywords
Examples
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + 4*x^10 + ... q^19 + q^43 + q^67 + 2*q^91 + 2*q^115 + 3*q^139 + q^163 + 2*q^187 + 3*q^211 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A008443.
Programs
-
Mathematica
A181648[n_]:= SeriesCoefficient[QPochhammer[q^2, q^2]*QPochhammer[q^6, q^6]^3/QPochhammer[q, q], {q, 0, n}]; Table[A181648[n], {n, 0, 50}] (* G. C. Greubel, Dec 24 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^+2 + A) * eta(x^6 + A)^3 / eta(x + A), n))}
Formula
Expansion of q^(-19/24) * eta(q^2) * eta(q^6)^3 / eta(q) in powers of q.
Euler transform of period 6 sequence [ 1, 0, 1, 0, 1, -3, ...].
3 * a(n) = A008443(3*n + 2).
Comments