cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181648 Expansion of x^(-2/3) * psi(x) * c(x^2) / 3 in powers of x where psi() is a Ramanujan theta function and c() is a cubic AGM theta function.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 1, 2, 3, 2, 4, 3, 3, 3, 4, 3, 2, 2, 6, 5, 3, 5, 3, 5, 4, 5, 3, 4, 5, 4, 5, 4, 5, 7, 6, 7, 3, 3, 7, 4, 8, 4, 4, 5, 7, 6, 5, 6, 7, 8, 6, 4, 6, 9, 6, 8, 6, 4, 4, 4, 11, 7, 4, 11, 4, 9, 6, 7, 8, 7, 11, 5, 5, 8, 8, 10, 6, 5, 10, 6, 8, 6, 7, 7, 8
Offset: 0

Views

Author

Michael Somos, Jun 22 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + 4*x^10 + ...
q^19 + q^43 + q^67 + 2*q^91 + 2*q^115 + 3*q^139 + q^163 + 2*q^187 + 3*q^211 + ...
		

Crossrefs

Cf. A008443.

Programs

  • Mathematica
    A181648[n_]:= SeriesCoefficient[QPochhammer[q^2, q^2]*QPochhammer[q^6, q^6]^3/QPochhammer[q, q], {q, 0, n}]; Table[A181648[n], {n, 0, 50}] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^+2 + A) * eta(x^6 + A)^3 / eta(x + A), n))}

Formula

Expansion of q^(-19/24) * eta(q^2) * eta(q^6)^3 / eta(q) in powers of q.
Euler transform of period 6 sequence [ 1, 0, 1, 0, 1, -3, ...].
3 * a(n) = A008443(3*n + 2).