A181649 An INVERT sequence for A010054.
1, 1, 2, 3, 6, 10, 18, 32, 57, 101, 179, 319, 566, 1006, 1786, 3174, 5638, 10016, 17793, 31609, 56153, 99753, 177211, 314810, 559255, 993501, 1764935, 3135366, 5569909, 9894819, 17577926, 31226796, 55473705, 98547807, 175067983, 311004383
Offset: 0
Examples
1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 18*x^6 + 32*x^7 + 57*x^8 + 101*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[1/(1 - q^(7/8)*eta[q^2]^2/eta[q]), {q, 0, 50}], q] (* G. C. Greubel, Sep 16 2018 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (1 - x * eta(x^2 + A)^2 / eta(x + A)), n))} /* Michael Somos, Jan 03 2013 */
Formula
G.f.: 1/(1-x*Product{k>0,(1 - x^(2k))/(1-x^(2k-1))}).
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x^1 / (1 - x / (1 + x / (1 + x^2 / (1 - x / (1 + x / (1 + x^3 / (1 - x / (1 + x / ...)))))))))))). - Michael Somos, Jan 03 2013
a(n) ~ c / r^n, where r = 0.5629116358141452127351993944163442032777187438473224785071475357915... is the root of the equation (-1 + x)*QPochhammer(x^2, x^2) = QPochhammer(1/x, x^2) and c = 0.5730261147067572839709085685318242468812339379480160560847761872213851... - Vaclav Kotesovec, Jan 23 2024
Comments