cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181649 An INVERT sequence for A010054.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 32, 57, 101, 179, 319, 566, 1006, 1786, 3174, 5638, 10016, 17793, 31609, 56153, 99753, 177211, 314810, 559255, 993501, 1764935, 3135366, 5569909, 9894819, 17577926, 31226796, 55473705, 98547807, 175067983, 311004383
Offset: 0

Views

Author

Paul Barry, Nov 03 2010

Keywords

Comments

Eigensequence of the sequence array for A010054.

Examples

			1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 18*x^6 + 32*x^7 + 57*x^8 + 101*x^9 + ...
		

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[1/(1 - q^(7/8)*eta[q^2]^2/eta[q]), {q, 0, 50}], q] (* G. C. Greubel, Sep 16 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (1 - x * eta(x^2 + A)^2 / eta(x + A)), n))} /* Michael Somos, Jan 03 2013 */

Formula

G.f.: 1/(1-x*Product{k>0,(1 - x^(2k))/(1-x^(2k-1))}).
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x^1 / (1 - x / (1 + x / (1 + x^2 / (1 - x / (1 + x / (1 + x^3 / (1 - x / (1 + x / ...)))))))))))). - Michael Somos, Jan 03 2013
a(n) ~ c / r^n, where r = 0.5629116358141452127351993944163442032777187438473224785071475357915... is the root of the equation (-1 + x)*QPochhammer(x^2, x^2) = QPochhammer(1/x, x^2) and c = 0.5730261147067572839709085685318242468812339379480160560847761872213851... - Vaclav Kotesovec, Jan 23 2024