cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181665 G.f. satisfies: A(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k)^2 *x^k* A(x)^k].

Original entry on oeis.org

1, 1, 2, 6, 17, 51, 161, 519, 1707, 5711, 19358, 66342, 229505, 800333, 2810370, 9928806, 35266403, 125863071, 451119566, 1623142622, 5860507205, 21227095355, 77108788287, 280847802645, 1025416658863, 3752414144071, 13760368353098
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2011

Keywords

Comments

Compare g.f. to the g.f. M(x) of Motzkin numbers:
M(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k) * x^k*M(x)^k].

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 17*x^4 + 51*x^5 + 161*x^6 + ...
where g.f. A(x) satisfies:
(1) A(x) = 1 + x*(1 + x*A(x)) + x^2*(1 + 4*x*A(x) + x^2*A(x)^2) + x^3*(1 + 9*x*A(x) + 9*x^2*A(x)^2 + x^3*A(x)^3) + x^4*(1 + 16*x*A(x) + 36*x^2*A(x)^2 + 16*x^3*A(x)^3 + x^4*A(x)^4) + ...
(2) A(x) = 1/(1-x) + x^2*A(x)*(1+x)/(1-x)^3 + x^4*A(x)^2*(1+4*x+x^2)/(1-x)^5  + x^6*A(x)^3*(1+9*x+9*x^2+x^3)/(1-x)^7 + ...
(3) A(x) = 1/(1-x-x^2*A(x)) + 2*x^3*A(x)/(1-x-x^2*A(x))^3 + 6*x^6*A(x)^2/(1-x-x^2*A(x))^5 + 20*x^9*A(x)^3/(1-x-x^2*A(x))^7 + ...
		

Crossrefs

Programs

  • Mathematica
    max = 27; se = 1/x*InverseSeries[ Series[ x/(x + x^2 + Sqrt[1 + 4*x^3]), {x, 0, max}], x]; CoefficientList[se, x] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x/(x + x^2 + sqrt(1+4*x^3+O(x^(n+2))))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=x*A+x^2*A^2+sqrt(1 + 4*x^3*A^3+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*sum(k=0,m,binomial(m,k)^2*x^k*(A+x*O(x^n))^k)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*(1-x*A)^(2*m+1)*sum(k=0,n,binomial(m+k,k)^2*x^k*(A+x^2*O(x^n))^k)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n\2,x^(2*m)*(A+x*O(x^n))^m*sum(k=0,n,binomial(m+k,k)^2*x^k)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n\2,x^(2*m)*A^m/(1-x+x*O(x^n))^(2*m+1)*sum(k=0,m,binomial(m,k)^2*x^k)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\3,(2*m)!/m!^2*x^(3*m)*A^m/(1-x-x^2*A+x*O(x^n))^(2*m+1))); polcoeff(A, n)}

Formula

G.f. A(x) satisfies:
(1) A(x) = x*A(x) + x^2*A(x)^2 + sqrt(1 + 4*x^3*A(x)^3);
(2) A(x) = (1/x)*Series_Reversion[x/(x + x^2 + sqrt(1+4*x^3))];
(3) A(x) = -1 + x*A(x) + x^2*A(x)^2 + 2/C(-x^3*A(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108);
(4) A(x) = Sum_{n>=0} x^n*(1 - x*A(x))^(2*n+1) * [Sum_{k>=0} C(n+k,k)^2 *x^k*A(x)^k];
(5) A(x) = Sum_{n>=0} x^(2n)*A(x)^n*[Sum_{k>=0} C(n+k,k)^2*x^k];
(6) A(x) = Sum_{n>=0} x^(2n)*A(x)^n*[Sum_{k=0..n} C(n,k)^2*x^k] /(1-x)^(2n+1);
(7) A(x) = Sum_{n>=0} (2n)!/n!^2 * x^(3n)*A(x)^n/(1-x-x^2*A(x))^(2n+1).
a(n) ~ sqrt(3*s^3/(-1 + 3*r + r^3 + 8*r^6*s^3 - 6*r^4*s*(1+2*s) + 3*r^2*(2*s-1))) / (sqrt(Pi)*n^(3/2)*r^(n-3/2)), where r = 0.25811980810324170407..., s = 2.3904081948888478693... are roots of the system of equations r + 2*r^2*s + (6*r^3*s^2)/sqrt(1 + 4*r^3*s^3) = 1, r*s + r^2*s^2 + sqrt(1 + 4*r^3*s^3) = s. - Vaclav Kotesovec, Mar 07 2014