A246840
Expansion of Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(2*k).
Original entry on oeis.org
1, 1, 1, 2, 5, 10, 18, 35, 73, 151, 306, 623, 1286, 2668, 5531, 11477, 23889, 49852, 104175, 217936, 456534, 957609, 2010839, 4226417, 8891022, 18719637, 39443860, 83170162, 175484915, 370491775, 782648333, 1654197568, 3498049053, 7400639286, 15664103420, 33168342557, 70260909811
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 10*x^5 + 18*x^6 + 35*x^7 + ...
where, by definition,
A(x) = 1 + x*(1 + x^2) + x^2*(1 + 2^2*x^2 + x^4)
+ x^3*(1 + 3^2*x^2 + 3^2*x^4 + x^6)
+ x^4*(1 + 4^2*x^2 + 6^2*x^4 + 4^2*x^6 + x^8)
+ x^5*(1 + 5^2*x^2 + 10^2*x^4 + 10^2*x^6 + 5^2*x^8 + x^10) + ...
which is also given by the series identity:
A(x) = 1/(1-x+x^3) + 2*x^3/(1-x+x^3)^3 + 6*x^6/(1-x+x^3)^5 + 20*x^9/(1-x+x^3)^7 + 70*x^12/(1-x+x^3)^9 + 252*x^15/(1-x+x^3)^11 + 924*x^18/(1-x+x^3)^13 + ...
The logarithm of the g.f. begins:
log(A(x)) = x*(1 + x^2) + x^2*(1 + 6*x^2 + x^4)/2
+ x^3*(1 + 15*x^2 + 15*x^4 + x^6)/3
+ x^4*(1 + 28*x^2 + 70*x^4 + 28*x^6 + x^8)/4
+ x^5*(1 + 45*x^2 + 210*x^4 + 210*x^6 + 45*x^8 + x^10)/5 + ...
more explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 13*x^4/4 + 26*x^5/5 + 46*x^6/6 + 99*x^7/7 + 229*x^8/8 + 499*x^9/9 + 1046*x^10/10 + 2223*x^11/11 + 4810*x^12/12 + ...
where the logarithmic derivative equals
A'(x)/A(x) = (1-x+3*x^2+4*x^3-3*x^5)/((1-x+2*x^2-x^3)*(1-x-2*x^2-x^3)).
-
CoefficientList[Series[1/Sqrt[(1 - x - x^3)^2 - 4*x^4], {x,0,50}], x] (* G. C. Greubel, Apr 27 2017 *)
-
/* By definition: */
{a(n)=local(A=1);A=sum(m=0,n,x^m*sum(k=0,m,binomial(m,k)^2*x^(2*k)) +x*O(x^n));polcoeff(A,n)}
for(n=0,40,print1(a(n),", "))
-
/* From closed formula: */
{a(n)=local(A=1);A= 1/sqrt((1 - x - x^3)^2 - 4*x^4 +x*O(x^n));polcoeff(A, n)}
for(n=0,40,print1(a(n),", "))
-
/* From a series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n, (2*m)!/(m!)^2 * x^(3*m) / (1 - x + x^3 +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n, x^m*(1-x^2)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^(2*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n\3, x^(3*m)*sum(k=0, n-3*m, binomial(m+k, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n\3, x^(3*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From exponential formula: */
{a(n)=local(A=1);A=exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k)*x^(2*k)) * x^m/m) +x*O(x^n));polcoeff(A, n)}
for(n=0,40,print1(a(n),", "))
-
/* From exponential formula: */
{a(n)=local(A=1);A=exp(sum(m=1, n, ((1+x)^(2*m) + (1-x)^(2*m))/2 * x^m/m) +x*O(x^n));polcoeff(A, n)}
for(n=0,40,print1(a(n),", "))
-
/* From formula for a(n): */
{a(n)=sum(k=0,n\2,binomial(n-2*k,k)^2)}
for(n=0,40,print1(a(n),", "))
A246883
Expansion of Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(3*k).
Original entry on oeis.org
1, 1, 1, 1, 2, 5, 10, 17, 27, 46, 86, 165, 308, 558, 1006, 1841, 3421, 6383, 11863, 21966, 40697, 75662, 141099, 263429, 491778, 918104, 1715259, 3208078, 6005818, 11250198, 21082487, 39524241, 74135187, 139128897, 261228200, 490682127, 922015964, 1733127107, 3258939997, 6130162494, 11534742080
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 5*x^5 + 10*x^6 + 17*x^7 +...
where, by definition,
A(x) = 1 + x*(1 + x^3) + x^2*(1 + 2^2*x^3 + x^6)
+ x^3*(1 + 3^2*x^3 + 3^2*x^6 + x^9)
+ x^4*(1 + 4^2*x^3 + 6^2*x^6 + 4^2*x^9 + x^12)
+ x^5*(1 + 5^2*x^3 + 10^2*x^6 + 10^2*x^9 + 5^2*x^12 + x^15) +...
which is also given by the series identity:
A(x) = 1/(1-x+x^4) + 2*x^4/(1-x+x^4)^3 + 6*x^8/(1-x+x^4)^5 + 20*x^12/(1-x+x^4)^7 + 70*x^16/(1-x+x^4)^9 + 252*x^20/(1-x+x^4)^11 + 924*x^24/(1-x+x^4)^13 +...
The logarithm of the g.f. begins:
log(A(x)) = x*(1 + x^3) + x^2*(1 + 6*x^3 + x^6)/2
+ x^3*(1 + 15*x^3 + 15*x^6 + x^9)/3
+ x^4*(1 + 28*x^3 + 70*x^6 + 28*x^9 + x^12)/4
+ x^5*(1 + 45*x^3 + 210*x^6 + 210*x^9 + 45*x^12 + x^15)/5 +...
more explicitly,
log(A(x)) = x + x^2/2 + x^3/3 + 5*x^4/4 + 16*x^5/5 + 31*x^6/6 + 50*x^7/7 + 77*x^8/8 + 145*x^9/9 + 306*x^10/10 + 628*x^11/11 + 1199*x^12/12 +...
where the logarithmic derivative equals
A'(x)/A(x) = (1-x+4*x^3+5*x^4-4*x^7)/((1-x+2*x^2+x^4)*(1-x-2*x^2+x^4)).
-
CoefficientList[Series[1/Sqrt[(1 - x + x^4)^2 - 4 x^4], {x, 0, 40}], x] (* Michael De Vlieger, Sep 10 2021 *)
-
/* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^(3*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From closed formula: */
{a(n)=local(A=1); A= 1/sqrt((1 - x + x^4)^2 - 4*x^4 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n, (2*m)!/(m!)^2 * x^(4*m) / (1 - x + x^4 +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n, x^m*(1-x^3)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^(3*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n\4, x^(4*m)*sum(k=0, n-4*m, binomial(m+k, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n\4, x^(4*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From exponential formula: */
{a(n)=local(A=1); A=exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k)*x^(3*k)) * x^m/m) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From formula for a(n): */
{a(n)=sum(k=0, n\3, binomial(n-3*k, k)^2)}
for(n=0, 40, print1(a(n), ", "))
A246884
Expansion of Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(4*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 5, 10, 17, 26, 38, 59, 101, 182, 326, 564, 945, 1566, 2622, 4476, 7750, 13455, 23231, 39837, 68101, 116611, 200526, 346137, 598438, 1034227, 1785400, 3080418, 5317009, 9187567, 15893830, 27515434, 47647774, 82513447, 142902640, 247553410, 429020710, 743846284
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 5*x^6 + 10*x^7 + 17*x^8 +...
where, by definition,
A(x) = 1 + x*(1 + x^4) + x^2*(1 + 2^2*x^4 + x^8)
+ x^3*(1 + 3^2*x^4 + 3^2*x^8 + x^12)
+ x^4*(1 + 4^2*x^4 + 6^2*x^8 + 4^2*x^12 + x^16)
+ x^5*(1 + 5^2*x^4 + 10^2*x^8 + 10^2*x^12 + 5^2*x^16 + x^20) +...
which is also given by the series identity:
A(x) = 1/(1-x+x^5) + 2*x^5/(1-x+x^5)^3 + 6*x^10/(1-x+x^5)^5 + 20*x^15/(1-x+x^5)^7 + 70*x^20/(1-x+x^5)^9 + 252*x^25/(1-x+x^5)^11 + 924*x^30/(1-x+x^5)^13 +...
The logarithm of the g.f. begins:
log(A(x)) = x*(1 + x^4) + x^2*(1 + 6*x^4 + x^8)/2
+ x^3*(1 + 15*x^4 + 15*x^8 + x^12)/3
+ x^4*(1 + 28*x^4 + 70*x^8 + 28*x^12 + x^16)/4
+ x^5*(1 + 45*x^4 + 210*x^8 + 210*x^12 + 45*x^16 + x^20)/5 +...
more explicitly,
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + 19*x^6/6 + 36*x^7/7 + 57*x^8/8 + 82*x^9/9 + 116*x^10/10 + 199*x^11/11 + 391*x^12/12 +...
where the logarithmic derivative equals
A'(x)/A(x) = (1-x+5*x^4+6*x^5-5*x^9)/((1+x+x^2)*(1-2*x+x^2-x^3)*(1-x+2*x^3-x^5)).
-
CoefficientList[Series[1/Sqrt[(1 - x + x^5)^2 - 4 x^5], {x, 0, 41}], x] (* Michael De Vlieger, Sep 10 2021 *)
-
/* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^(4*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From closed formula: */
{a(n)=local(A=1); A= 1/sqrt((1 - x - x^5)^2 - 4*x^6 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n, (2*m)!/(m!)^2 * x^(5*m) / (1 - x + x^5 +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n, x^m*(1-x^4)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^(4*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n\5, x^(5*m)*sum(k=0, n-4*m, binomial(m+k, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n\5, x^(5*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From exponential formula: */
{a(n)=local(A=1); A=exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k)*x^(4*k)) * x^m/m) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From exponential formula: */
{a(n)=local(A=1); A=exp(sum(m=1, n, ((1+x^2)^(2*m) + (1-x^2)^(2*m))/2 * x^m/m) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From formula for a(n): */
{a(n)=sum(k=0, n\4, binomial(n-4*k, k)^2)}
for(n=0, 40, print1(a(n), ", "))
A248193
Expansion of Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(5*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 5, 10, 17, 26, 37, 51, 74, 118, 201, 347, 586, 955, 1509, 2351, 3682, 5871, 9545, 15700, 25851, 42292, 68606, 110635, 178190, 287852, 467313, 761957, 1245011, 2033856, 3317230, 5401332, 8787539, 14301168, 23301005, 38016585, 62090615, 101457357, 165778774
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + 5*x^7 + 10*x^8 +...
where, by definition,
A(x) = 1 + x*(1 + x^5) + x^2*(1 + 2^2*x^5 + x^10)
+ x^3*(1 + 3^2*x^5 + 3^2*x^10 + x^15)
+ x^4*(1 + 4^2*x^5 + 6^2*x^10 + 4^2*x^15 + x^20)
+ x^5*(1 + 5^2*x^5 + 10^2*x^10 + 10^2*x^15 + 5^2*x^20 + x^25) +...
which is also given by the series identity:
A(x) = 1/(1-x+x^6) + 2*x^6/(1-x+x^6)^3 + 6*x^12/(1-x+x^6)^5 + 20*x^18/(1-x+x^6)^7 + 70*x^24/(1-x+x^6)^9 + 252*x^30/(1-x+x^6)^11 + 924*x^36/(1-x+x^6)^13 +...
The logarithm of the g.f. begins:
log(A(x)) = x*(1 + x^5) + x^2*(1 + 6*x^5 + x^10)/2
+ x^3*(1 + 15*x^5 + 15*x^10 + x^15)/3
+ x^4*(1 + 28*x^5 + 70*x^10 + 28*x^15 + x^20)/4
+ x^5*(1 + 45*x^5 + 210*x^10 + 210*x^15 + 45*x^20 + x^25)/5 +...
more explicitly,
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + x^5/5 + 7*x^6/6 + 22*x^7/7 + 41*x^8/8 + 64*x^9/9 + 91*x^10/10 + 122*x^11/11 + 163*x^12/12 +...
where the logarithmic derivative equals
A'(x)/A(x) = (1 - x + 6*x^5 + 7*x^6 - 6*x^11) / ((1 - x + 2*x^3 + x^6)*(1 - x - 2*x^3 + x^6)).
-
CoefficientList[Series[1 / Sqrt[(1-x+x^6)^2 - 4*x^6], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2014 *)
-
/* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^(5*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
-
/* From closed formula: */
{a(n)=local(A=1); A= 1/sqrt((1 - x + x^6)^2 - 4*x^6 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
-
/* From a series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n, (2*m)!/(m!)^2 * x^(6*m) / (1 - x + x^6 +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n, x^m*(1-x^5)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^(5*k)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n\6, x^(6*m)*sum(k=0, n-5*m, binomial(m+k, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
-
/* From a binomial series identity: */
{a(n)=local(A=1+x); A=sum(m=0, n\6, x^(6*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* From exponential formula: */
{a(n)=local(A=1); A=exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k)*x^(5*k)) * x^m/m) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
-
/* From formula for a(n): */
{a(n)=sum(k=0, n\5, binomial(n-5*k, k)^2)}
for(n=0, 50, print1(a(n), ", "))
A183876
G.f. satisfies: A(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k)^2 *x^k* A(x)^(2k)].
Original entry on oeis.org
1, 1, 2, 7, 24, 86, 328, 1289, 5180, 21232, 88384, 372582, 1587442, 6825092, 29573380, 129014039, 566183860, 2497841196, 11071594936, 49281430216, 220193658876, 987234942328, 4440142628200, 20027079949202, 90569211556534
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 24*x^4 + 86*x^5 + 328*x^6 + ...
where g.f. A(x) satisfies:
(1) A(x) = 1 + x*(1 + x*A(x)^2) + x^2*(1 + 4*x*A(x)^2 + x^2*A(x)^4) + x^3*(1 + 9*x*A(x)^2 + 9*x^2*A(x)^4 + x^3*A(x)^6) + x^4*(1 + 16*x*A(x)^2 + 36*x^2*A(x)^4 + 16*x^3*A(x)^6 + x^4*A(x)^8) + ...;
(2) A(x) = 1/(1-x) + x^2*A(x)^2*(1+x)/(1-x)^3 + x^4*A(x)^4*(1+4*x+x^2)/(1-x)^5 + x^6*A(x)^6*(1+9*x+9*x^2+x^3)/(1-x)^7 + ...
-
Table[Sum[Binomial[n+k, 2*k]*Binomial[n+1, n-2*k]/(n+1),{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 07 2014 *)
-
{a(n)=sum(k=0, n\2, binomial(n+k, 2*k)*binomial(n+1, n-2*k))/(n+1)}
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(A^2+x*O(x^n))^k))); polcoeff(A, n)}
-
{a(n)=polcoeff((1/x)*serreverse(x*(1-x^2)^2/(sqrt((1-x^2)^3+x^2*(1+x^2)^2+x*O(x^n))+x*(1+x^2))),n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1/sqrt((1-x-x^2*A^2)^2-4*x^3*A^2+x*O(x^n)));polcoeff(A,n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*(1-x*A^2)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^k*(A^2+x^2*O(x^n))^k))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(2*m)*(A^2+x*O(x^n))^m*sum(k=0, n, binomial(m+k, k)^2*x^k))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(2*m)*A^(2*m)/(1-x+x*O(x^n))^(2*m+1)*sum(k=0, m, binomial(m, k)^2*x^k))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\3,(2*m)!/m!^2*x^(3*m)*A^(2*m)/(1-x-x^2*A^2+x*O(x^n))^(2*m+1))); polcoeff(A, n)}
A186097
G.f. satisfies: A(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k)^3 *x^k* A(x)^k].
Original entry on oeis.org
1, 1, 2, 10, 39, 147, 639, 2857, 12725, 58081, 270250, 1268444, 6009439, 28736727, 138401100, 670641714, 3268021317, 16004012529, 78716657052, 388701645264, 1926266491659, 9576792342099, 47753368809171, 238759903786041
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 39*x^4 + 147*x^5 + 639*x^6 +...
where g.f. A(x) satisfies:
* A(x) = 1 + x*(1 + x*A(x)) + x^2*(1 + 8*x*A(x) + x^2*A(x)^2) + x^3*(1 + 27*x*A(x) + 27*x^2*A(x)^2 + x^3*A(x)^3) + x^4*(1 + 64*x*A(x) + 216*x^2*A(x)^2 + 64*x^3*A(x)^3 + x^4*A(x)^4) +...;
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^3*x^k*(A+x*O(x^n))^k))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(2*m)*(A+x*O(x^n))^m*sum(k=0, n, binomial(m+k, k)^3*x^k))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\3,(3*m)!/m!^3*x^(3*m)*A^m/(1-x-x^2*A+x*O(x^n))^(3*m+1))); polcoeff(A, n)}
A246861
G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * (x*A(x))^(2*k).
Original entry on oeis.org
1, 1, 1, 2, 7, 21, 54, 141, 407, 1231, 3691, 10990, 33144, 101674, 314679, 977289, 3047527, 9557503, 30133759, 95390622, 302960929, 965282651, 3085146472, 9888455045, 31774215928, 102334358736, 330298415136, 1068242904256, 3461372341327, 11235251353747, 36527859658661
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 21*x^5 + 54*x^6 + 141*x^7 + ...
where the g.f. A = A(x) equals the binomial series:
A(x) = 1 + x*(1 + x^2*A^2) + x^2*(1 + 2^2*x^2*A^2 + x^4*A^4)
+ x^3*(1 + 3^2*x^2*A^2 + 3^2*x^4*A^4 + x^6*A^6)
+ x^4*(1 + 4^2*x^2*A^2 + 6^2*x^4*A^4 + 4^2*x^6*A^6 + x^8*A^8)
+ x^5*(1 + 5^2*x^2*A^2 + 10^2*x^4*A^4 + 10^2*x^6*A^6 + 5^2*x^8*A^8 + x^10*A^10) + ...
Let A = g.f. A(x), then the g.f. satisfies:
log(A(x)) = x*(1 + x^2*A^2) + x^2*(1 + 6*x^2*A^2 + x^4*A^4)/2
+ x^3*(1 + 15*x^2*A^2 + 15*x^4*A^4 + x^6*A^6)/3
+ x^4*(1 + 28*x^2*A^2 + 70*x^4*A^4 + 28*x^6*A^6 + x^8*A^8)/4
+ x^5*(1 + 45*x^2*A^2 + 210*x^4*A^4 + 210*x^6*A^6 + 45*x^8*A^8 + x^10*A^10)/5 + ...
RELATED SERIES:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 19*x^4 + 60*x^5 + 168*x^6 + ...
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 39*x^4 + 126*x^5 + 376*x^6 + ...
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 232*x^5 + 726*x^6 + ...
A(x)^6 = 1 + 6*x + 21*x^2 + 62*x^3 + 192*x^4 + 642*x^5 + 2145*x^6 + ...
where 1 = (1-x)^2*A(x)^2 - 2*x^3*(1+x)*A(x)^4 + x^6*A(x)^6.
Let G(x) = x/Series_Reversion(x*A(x)), then G(x*A(x)) = A(x), where
G(x) = x + x^3 + 1 + 2*x^4 - 2*x^8 + 4*x^12 - 10*x^16 + 28*x^20 - 84*x^24 + ...
G(x) = x + x^3 + sqrt(1 + 4*x^4).
-
/* By definition: */
{a(n)=local(A=1); for(i=1,n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*(x*A)^(2*k)) +x*O(x^n))); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
-
/* (1) From a binomial series identity: */
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m * sum(k=0, n, binomial(m+k, k)^2*(x*A +x*O(x^n))^(2*k)) * (1-x^2*A^2)^(2*m+1) )); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
-
/* (2) From a binomial series identity: */
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(3*m)*(A +x*O(x^n))^(2*m)*sum(k=0, n, binomial(m+k, k)^2*x^k))); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
-
/* (3) From a binomial series identity: */
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(3*m)*A^(2*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) )); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
-
/* (4) From exponential series formula: */
{a(n)=local(A=1); for(i=1,n, A=exp(sum(m=1, n, ((1+x*A)^(2*m) + (1-x*A)^(2*m))/2 * x^m/m) +x*O(x^n))); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
-
/* (6) From functional equation: */
{a(n)=local(A=1); for(i=1,n, A = 1 / sqrt((1 - x*(1 - x*A)^2) * (1 - x*(1 + x*A)^2)) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* (7) From functional equation: */
{a(n)=local(A=1); for(i=1,n, A = x*A + x^3*A^3 + sqrt(1 + 4*x^4*A^4 +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
-
/* (8) From explicit formula: */
{a(n)=local(A=1); A= 1/x * serreverse( x / (x + x^3 + sqrt(1 + 4*x^4 +x*O(x^n) )) ); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
Showing 1-7 of 7 results.
Comments