cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A181665 G.f. satisfies: A(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k)^2 *x^k* A(x)^k].

Original entry on oeis.org

1, 1, 2, 6, 17, 51, 161, 519, 1707, 5711, 19358, 66342, 229505, 800333, 2810370, 9928806, 35266403, 125863071, 451119566, 1623142622, 5860507205, 21227095355, 77108788287, 280847802645, 1025416658863, 3752414144071, 13760368353098
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2011

Keywords

Comments

Compare g.f. to the g.f. M(x) of Motzkin numbers:
M(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k) * x^k*M(x)^k].

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 17*x^4 + 51*x^5 + 161*x^6 + ...
where g.f. A(x) satisfies:
(1) A(x) = 1 + x*(1 + x*A(x)) + x^2*(1 + 4*x*A(x) + x^2*A(x)^2) + x^3*(1 + 9*x*A(x) + 9*x^2*A(x)^2 + x^3*A(x)^3) + x^4*(1 + 16*x*A(x) + 36*x^2*A(x)^2 + 16*x^3*A(x)^3 + x^4*A(x)^4) + ...
(2) A(x) = 1/(1-x) + x^2*A(x)*(1+x)/(1-x)^3 + x^4*A(x)^2*(1+4*x+x^2)/(1-x)^5  + x^6*A(x)^3*(1+9*x+9*x^2+x^3)/(1-x)^7 + ...
(3) A(x) = 1/(1-x-x^2*A(x)) + 2*x^3*A(x)/(1-x-x^2*A(x))^3 + 6*x^6*A(x)^2/(1-x-x^2*A(x))^5 + 20*x^9*A(x)^3/(1-x-x^2*A(x))^7 + ...
		

Crossrefs

Programs

  • Mathematica
    max = 27; se = 1/x*InverseSeries[ Series[ x/(x + x^2 + Sqrt[1 + 4*x^3]), {x, 0, max}], x]; CoefficientList[se, x] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x/(x + x^2 + sqrt(1+4*x^3+O(x^(n+2))))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=x*A+x^2*A^2+sqrt(1 + 4*x^3*A^3+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*sum(k=0,m,binomial(m,k)^2*x^k*(A+x*O(x^n))^k)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*(1-x*A)^(2*m+1)*sum(k=0,n,binomial(m+k,k)^2*x^k*(A+x^2*O(x^n))^k)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n\2,x^(2*m)*(A+x*O(x^n))^m*sum(k=0,n,binomial(m+k,k)^2*x^k)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n\2,x^(2*m)*A^m/(1-x+x*O(x^n))^(2*m+1)*sum(k=0,m,binomial(m,k)^2*x^k)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\3,(2*m)!/m!^2*x^(3*m)*A^m/(1-x-x^2*A+x*O(x^n))^(2*m+1))); polcoeff(A, n)}

Formula

G.f. A(x) satisfies:
(1) A(x) = x*A(x) + x^2*A(x)^2 + sqrt(1 + 4*x^3*A(x)^3);
(2) A(x) = (1/x)*Series_Reversion[x/(x + x^2 + sqrt(1+4*x^3))];
(3) A(x) = -1 + x*A(x) + x^2*A(x)^2 + 2/C(-x^3*A(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108);
(4) A(x) = Sum_{n>=0} x^n*(1 - x*A(x))^(2*n+1) * [Sum_{k>=0} C(n+k,k)^2 *x^k*A(x)^k];
(5) A(x) = Sum_{n>=0} x^(2n)*A(x)^n*[Sum_{k>=0} C(n+k,k)^2*x^k];
(6) A(x) = Sum_{n>=0} x^(2n)*A(x)^n*[Sum_{k=0..n} C(n,k)^2*x^k] /(1-x)^(2n+1);
(7) A(x) = Sum_{n>=0} (2n)!/n!^2 * x^(3n)*A(x)^n/(1-x-x^2*A(x))^(2n+1).
a(n) ~ sqrt(3*s^3/(-1 + 3*r + r^3 + 8*r^6*s^3 - 6*r^4*s*(1+2*s) + 3*r^2*(2*s-1))) / (sqrt(Pi)*n^(3/2)*r^(n-3/2)), where r = 0.25811980810324170407..., s = 2.3904081948888478693... are roots of the system of equations r + 2*r^2*s + (6*r^3*s^2)/sqrt(1 + 4*r^3*s^3) = 1, r*s + r^2*s^2 + sqrt(1 + 4*r^3*s^3) = s. - Vaclav Kotesovec, Mar 07 2014

A246883 Expansion of Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(3*k).

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 10, 17, 27, 46, 86, 165, 308, 558, 1006, 1841, 3421, 6383, 11863, 21966, 40697, 75662, 141099, 263429, 491778, 918104, 1715259, 3208078, 6005818, 11250198, 21082487, 39524241, 74135187, 139128897, 261228200, 490682127, 922015964, 1733127107, 3258939997, 6130162494, 11534742080
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2014

Keywords

Comments

Limit a(n)/a(n+1) = t^2 = 0.524888598656404... (A072223) where t is the positive real root of 1 - x - x^4 = 0.
Diagonal of the rational function 1 / ((1-x)*(1-y) - (x*y)^4). - Seiichi Manyama, Apr 29 2025

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 5*x^5 + 10*x^6 + 17*x^7 +...
where, by definition,
A(x) = 1 + x*(1 + x^3) + x^2*(1 + 2^2*x^3 + x^6)
+ x^3*(1 + 3^2*x^3 + 3^2*x^6 + x^9)
+ x^4*(1 + 4^2*x^3 + 6^2*x^6 + 4^2*x^9 + x^12)
+ x^5*(1 + 5^2*x^3 + 10^2*x^6 + 10^2*x^9 + 5^2*x^12 + x^15) +...
which is also given by the series identity:
A(x) = 1/(1-x+x^4) + 2*x^4/(1-x+x^4)^3 + 6*x^8/(1-x+x^4)^5 + 20*x^12/(1-x+x^4)^7 + 70*x^16/(1-x+x^4)^9 + 252*x^20/(1-x+x^4)^11 + 924*x^24/(1-x+x^4)^13 +...
The logarithm of the g.f. begins:
log(A(x)) = x*(1 + x^3) + x^2*(1 + 6*x^3 + x^6)/2
+ x^3*(1 + 15*x^3 + 15*x^6 + x^9)/3
+ x^4*(1 + 28*x^3 + 70*x^6 + 28*x^9 + x^12)/4
+ x^5*(1 + 45*x^3 + 210*x^6 + 210*x^9 + 45*x^12 + x^15)/5 +...
more explicitly,
log(A(x)) = x + x^2/2 + x^3/3 + 5*x^4/4 + 16*x^5/5 + 31*x^6/6 + 50*x^7/7 + 77*x^8/8 + 145*x^9/9 + 306*x^10/10 + 628*x^11/11 + 1199*x^12/12 +...
where the logarithmic derivative equals
A'(x)/A(x) = (1-x+4*x^3+5*x^4-4*x^7)/((1-x+2*x^2+x^4)*(1-x-2*x^2+x^4)).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1 - x + x^4)^2 - 4 x^4], {x, 0, 40}], x] (* Michael De Vlieger, Sep 10 2021 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^(3*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From closed formula: */
    {a(n)=local(A=1); A= 1/sqrt((1 - x + x^4)^2 - 4*x^4 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n, (2*m)!/(m!)^2 * x^(4*m) / (1 - x + x^4 +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n, x^m*(1-x^3)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^(3*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n\4, x^(4*m)*sum(k=0, n-4*m, binomial(m+k, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n\4, x^(4*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) ); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From exponential formula: */
    {a(n)=local(A=1); A=exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k)*x^(3*k)) * x^m/m) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From formula for a(n): */
    {a(n)=sum(k=0, n\3, binomial(n-3*k, k)^2)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} (2*n)!/(n!)^2 * x^(4*n) / (1 - x + x^4)^(2*n+1). - Paul D. Hanna, Oct 15 2014
G.f.: Sum_{n>=0} x^n * [Sum_{k>=0} C(n+k,k)^2 * x^(3*k)] * (1-x^3)^(2*n+1).
G.f.: Sum_{n>=0} x^(4*n) * [Sum_{k>=0} C(n+k,k)^2 * x^k].
G.f.: Sum_{n>=0} x^(4*n) * [Sum_{k=0..n} C(n,k)^2 * x^k] /(1-x)^(2n+1).
G.f.: exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * x^(3*k) ).
G.f.: 1 / sqrt((1 - x + 2*x^2 + x^4)*(1 - x - 2*x^2 + x^4)).
G.f.: 1 / sqrt((1 - x + x^4)^2 - 4*x^4).
G.f.: 1 / sqrt((1 - x - x^4)^2 - 4*x^5).
a(n) = Sum_{k=0..[n/3]} C(n-3*k, k)^2.
n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 2*(n-2)*a(n-4) + (2*n-5)*a(n-5) - (n-4)*a(n-8). - Seiichi Manyama, Aug 10 2024

A246884 Expansion of Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(4*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 10, 17, 26, 38, 59, 101, 182, 326, 564, 945, 1566, 2622, 4476, 7750, 13455, 23231, 39837, 68101, 116611, 200526, 346137, 598438, 1034227, 1785400, 3080418, 5317009, 9187567, 15893830, 27515434, 47647774, 82513447, 142902640, 247553410, 429020710, 743846284
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2014

Keywords

Comments

Limit a(n)/a(n+1) = t^2 = 0.569840290998053... where t = A075778 is the positive real root of 1 - x - x^5 = 0.
Diagonal of the rational function 1 / ((1-x)*(1-y) - (x*y)^5). - Seiichi Manyama, Apr 29 2025

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 5*x^6 + 10*x^7 + 17*x^8 +...
where, by definition,
A(x) = 1 + x*(1 + x^4) + x^2*(1 + 2^2*x^4 + x^8)
+ x^3*(1 + 3^2*x^4 + 3^2*x^8 + x^12)
+ x^4*(1 + 4^2*x^4 + 6^2*x^8 + 4^2*x^12 + x^16)
+ x^5*(1 + 5^2*x^4 + 10^2*x^8 + 10^2*x^12 + 5^2*x^16 + x^20) +...
which is also given by the series identity:
A(x) = 1/(1-x+x^5) + 2*x^5/(1-x+x^5)^3 + 6*x^10/(1-x+x^5)^5 + 20*x^15/(1-x+x^5)^7 + 70*x^20/(1-x+x^5)^9 + 252*x^25/(1-x+x^5)^11 + 924*x^30/(1-x+x^5)^13 +...
The logarithm of the g.f. begins:
log(A(x)) = x*(1 + x^4) + x^2*(1 + 6*x^4 + x^8)/2
+ x^3*(1 + 15*x^4 + 15*x^8 + x^12)/3
+ x^4*(1 + 28*x^4 + 70*x^8 + 28*x^12 + x^16)/4
+ x^5*(1 + 45*x^4 + 210*x^8 + 210*x^12 + 45*x^16 + x^20)/5 +...
more explicitly,
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + 19*x^6/6 + 36*x^7/7 + 57*x^8/8 + 82*x^9/9 + 116*x^10/10 + 199*x^11/11 + 391*x^12/12 +...
where the logarithmic derivative equals
A'(x)/A(x) = (1-x+5*x^4+6*x^5-5*x^9)/((1+x+x^2)*(1-2*x+x^2-x^3)*(1-x+2*x^3-x^5)).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1 - x + x^5)^2 - 4 x^5], {x, 0, 41}], x] (* Michael De Vlieger, Sep 10 2021 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^(4*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From closed formula: */
    {a(n)=local(A=1); A= 1/sqrt((1 - x - x^5)^2 - 4*x^6 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n, (2*m)!/(m!)^2 * x^(5*m) / (1 - x + x^5 +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n, x^m*(1-x^4)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^(4*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n\5, x^(5*m)*sum(k=0, n-4*m, binomial(m+k, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n\5, x^(5*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) ); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From exponential formula: */
    {a(n)=local(A=1); A=exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k)*x^(4*k)) * x^m/m) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From exponential formula: */
    {a(n)=local(A=1); A=exp(sum(m=1, n, ((1+x^2)^(2*m) + (1-x^2)^(2*m))/2 * x^m/m) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From formula for a(n): */
    {a(n)=sum(k=0, n\4, binomial(n-4*k, k)^2)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} (2*n)!/(n!)^2 * x^(5*n) / (1 - x + x^5)^(2*n+1). - Paul D. Hanna, Oct 15 2014
G.f.: Sum_{n>=0} x^n * [Sum_{k>=0} C(n+k,k)^2 * x^(4*k)] * (1-x^4)^(2*n+1).
G.f.: Sum_{n>=0} x^(5*n) * [Sum_{k>=0} C(n+k,k)^2 * x^k].
G.f.: Sum_{n>=0} x^(5*n) * [Sum_{k=0..n} C(n,k)^2 * x^k] /(1-x)^(2n+1).
G.f.: exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * x^(4*k) ).
G.f.: exp( Sum_{n>=1} (x^n/n) * ((1+x^2)^(2*n) + (1-x^2)^(2*n))/2 ).
G.f.: 1 / sqrt((1 - x - 2*x^3 - x^5)*(1 - x + 2*x^3 - x^5)).
G.f.: 1 / sqrt((1 - x - x^5)^2 - 4*x^6).
G.f.: 1 / sqrt((1 - x + x^5)^2 - 4*x^5).
a(n) = Sum_{k=0..[n/4]} C(n-4*k, k)^2.
n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + (2*n-5)*a(n-5) + 2*(n-3)*a(n-6) - (n-5)*a(n-10). - Seiichi Manyama, Aug 10 2024

A375278 Expansion of 1/((1 - x - x^3)^2 - 4*x^4).

Original entry on oeis.org

1, 2, 3, 6, 15, 34, 70, 146, 317, 690, 1480, 3162, 6788, 14608, 31395, 67392, 144701, 310854, 667793, 1434310, 3080542, 6616676, 14212315, 30526804, 65567936, 140832740, 302495240, 649730544, 1395554885, 2997508382, 6438345511, 13828920758, 29703127299
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1-x-x^3)^2-4*x^4))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-4*k+2, 2*k+1))/2;

Formula

a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) + 2*a(n-4) - a(n-6).
a(n) = (1/2) * Sum_{k=0..floor(n/3)} binomial(2*n-4*k+2,2*k+1).

A248193 Expansion of Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 5, 10, 17, 26, 37, 51, 74, 118, 201, 347, 586, 955, 1509, 2351, 3682, 5871, 9545, 15700, 25851, 42292, 68606, 110635, 178190, 287852, 467313, 761957, 1245011, 2033856, 3317230, 5401332, 8787539, 14301168, 23301005, 38016585, 62090615, 101457357, 165778774
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2014

Keywords

Comments

Limit a(n)/a(n+1) = t^2 = 0.6054234235718265... where t is the positive real root of 1 - x - x^6 = 0.
Diagonal of the rational function 1 / ((1-x)*(1-y) - (x*y)^6). - Seiichi Manyama, Apr 29 2025

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + 5*x^7 + 10*x^8 +...
where, by definition,
A(x) = 1 + x*(1 + x^5) + x^2*(1 + 2^2*x^5 + x^10)
+ x^3*(1 + 3^2*x^5 + 3^2*x^10 + x^15)
+ x^4*(1 + 4^2*x^5 + 6^2*x^10 + 4^2*x^15 + x^20)
+ x^5*(1 + 5^2*x^5 + 10^2*x^10 + 10^2*x^15 + 5^2*x^20 + x^25) +...
which is also given by the series identity:
A(x) = 1/(1-x+x^6) + 2*x^6/(1-x+x^6)^3 + 6*x^12/(1-x+x^6)^5 + 20*x^18/(1-x+x^6)^7 + 70*x^24/(1-x+x^6)^9 + 252*x^30/(1-x+x^6)^11 + 924*x^36/(1-x+x^6)^13 +...
The logarithm of the g.f. begins:
log(A(x)) = x*(1 + x^5) + x^2*(1 + 6*x^5 + x^10)/2
+ x^3*(1 + 15*x^5 + 15*x^10 + x^15)/3
+ x^4*(1 + 28*x^5 + 70*x^10 + 28*x^15 + x^20)/4
+ x^5*(1 + 45*x^5 + 210*x^10 + 210*x^15 + 45*x^20 + x^25)/5 +...
more explicitly,
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + x^5/5 + 7*x^6/6 + 22*x^7/7 + 41*x^8/8 + 64*x^9/9 + 91*x^10/10 + 122*x^11/11 + 163*x^12/12 +...
where the logarithmic derivative equals
A'(x)/A(x) = (1 - x + 6*x^5 + 7*x^6 - 6*x^11) / ((1 - x + 2*x^3 + x^6)*(1 - x - 2*x^3 + x^6)).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1 / Sqrt[(1-x+x^6)^2 - 4*x^6], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2014 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^(5*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    /* From closed formula: */
    {a(n)=local(A=1); A= 1/sqrt((1 - x + x^6)^2 - 4*x^6 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    /* From a series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n, (2*m)!/(m!)^2 * x^(6*m) / (1 - x + x^6 +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n, x^m*(1-x^5)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^(5*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n\6, x^(6*m)*sum(k=0, n-5*m, binomial(m+k, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n\6, x^(6*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) ); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From exponential formula: */
    {a(n)=local(A=1); A=exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k)*x^(5*k)) * x^m/m) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    /* From formula for a(n): */
    {a(n)=sum(k=0, n\5, binomial(n-5*k, k)^2)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} (2*n)!/(n!)^2 * x^(6*n) / (1 - x + x^6)^(2*n+1). - Paul D. Hanna, Oct 15 2014
G.f.: Sum_{n>=0} x^n * [Sum_{k>=0} C(n+k,k)^2 * x^(5*k)] * (1-x^5)^(2*n+1).
G.f.: Sum_{n>=0} x^(6*n) * [Sum_{k>=0} C(n+k,k)^2 * x^k].
G.f.: Sum_{n>=0} x^(6*n) * [Sum_{k=0..n} C(n,k)^2 * x^k] /(1-x)^(2n+1).
G.f.: exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * x^(5*k) ).
G.f.: 1 / sqrt((1 - x + 2*x^3 + x^6)*(1 - x - 2*x^3 + x^6)).
G.f.: 1 / sqrt((1 - x + x^6)^2 - 4*x^6).
G.f.: 1 / sqrt((1 - x - x^6)^2 - 4*x^7).
a(n) = Sum_{k=0..[n/5]} C(n-5*k, k)^2.
n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 2*(n-3)*a(n-6) + (2*n-7)*a(n-7) - (n-6)*a(n-12). - Seiichi Manyama, Aug 10 2024

A375292 Expansion of 1/sqrt((1 - x + x^3)^2 + 4*x^4).

Original entry on oeis.org

1, 1, 1, 0, -3, -8, -14, -15, 1, 51, 146, 261, 286, -24, -1029, -2975, -5375, -5930, 591, 22014, 63886, 115947, 128183, -14595, -486466, -1413161, -2569868, -2840890, 361667, 10972167, 31861581, 57980426, 64018181, -8985428, -250991300, -727998021, -1324662165
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt((1-x+x^3)^2+4*x^4))
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n-2*k, k)^2);

Formula

n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) - (2*n-3)*a(n-3) - 2*(n-2)*a(n-4) - (n-3)*a(n-6).
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-2*k,k)^2.

A387507 a(n) = Sum_{k=0..floor(n/3)} 2^k * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 1, 1, 3, 9, 19, 37, 87, 217, 507, 1157, 2727, 6553, 15627, 37077, 88519, 212569, 510715, 1226853, 2952615, 7120921, 17192427, 41538293, 100458759, 243211865, 589313755, 1428931333, 3467193191, 8418640793, 20453853003, 49722339861, 120936710471
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k * Binomial(n-2*k, k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
  • Mathematica
    Table[Sum[2^k*Binomial[n-2*k, k]^2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Sep 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^k*binomial(n-2*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-x-2*x^3)^2 - 8*x^4).

A246861 G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * (x*A(x))^(2*k).

Original entry on oeis.org

1, 1, 1, 2, 7, 21, 54, 141, 407, 1231, 3691, 10990, 33144, 101674, 314679, 977289, 3047527, 9557503, 30133759, 95390622, 302960929, 965282651, 3085146472, 9888455045, 31774215928, 102334358736, 330298415136, 1068242904256, 3461372341327, 11235251353747, 36527859658661
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 21*x^5 + 54*x^6 + 141*x^7 + ...
where the g.f. A = A(x) equals the binomial series:
A(x) = 1 + x*(1 + x^2*A^2) + x^2*(1 + 2^2*x^2*A^2 + x^4*A^4)
+ x^3*(1 + 3^2*x^2*A^2 + 3^2*x^4*A^4 + x^6*A^6)
+ x^4*(1 + 4^2*x^2*A^2 + 6^2*x^4*A^4 + 4^2*x^6*A^6 + x^8*A^8)
+ x^5*(1 + 5^2*x^2*A^2 + 10^2*x^4*A^4 + 10^2*x^6*A^6 + 5^2*x^8*A^8 + x^10*A^10) + ...
Let A = g.f. A(x), then the g.f. satisfies:
log(A(x)) = x*(1 + x^2*A^2) + x^2*(1 + 6*x^2*A^2 + x^4*A^4)/2
+ x^3*(1 + 15*x^2*A^2 + 15*x^4*A^4 + x^6*A^6)/3
+ x^4*(1 + 28*x^2*A^2 + 70*x^4*A^4 + 28*x^6*A^6 + x^8*A^8)/4
+ x^5*(1 + 45*x^2*A^2 + 210*x^4*A^4 + 210*x^6*A^6 + 45*x^8*A^8 + x^10*A^10)/5 + ...
RELATED SERIES:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 19*x^4 + 60*x^5 + 168*x^6 + ...
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 39*x^4 + 126*x^5 + 376*x^6 + ...
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 232*x^5 + 726*x^6 + ...
A(x)^6 = 1 + 6*x + 21*x^2 + 62*x^3 + 192*x^4 + 642*x^5 + 2145*x^6 + ...
where 1 = (1-x)^2*A(x)^2 - 2*x^3*(1+x)*A(x)^4 + x^6*A(x)^6.
Let G(x) = x/Series_Reversion(x*A(x)), then G(x*A(x)) = A(x), where
G(x) = x + x^3 + 1 + 2*x^4 - 2*x^8 + 4*x^12 - 10*x^16 + 28*x^20 - 84*x^24 + ...
G(x) = x + x^3 + sqrt(1 + 4*x^4).
		

Crossrefs

Programs

  • PARI
    /* By definition: */
    {a(n)=local(A=1); for(i=1,n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*(x*A)^(2*k)) +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (1) From a binomial series identity: */
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m * sum(k=0, n, binomial(m+k, k)^2*(x*A +x*O(x^n))^(2*k)) * (1-x^2*A^2)^(2*m+1) )); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (2) From a binomial series identity: */
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(3*m)*(A +x*O(x^n))^(2*m)*sum(k=0, n, binomial(m+k, k)^2*x^k))); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (3) From a binomial series identity: */
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(3*m)*A^(2*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) )); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (4) From exponential series formula: */
    {a(n)=local(A=1); for(i=1,n, A=exp(sum(m=1, n, ((1+x*A)^(2*m) + (1-x*A)^(2*m))/2 * x^m/m) +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 35, print1(a(n), ", "))
    
  • PARI
    /* (6) From functional equation: */
    {a(n)=local(A=1); for(i=1,n, A =  1 / sqrt((1 - x*(1 - x*A)^2) * (1 - x*(1 + x*A)^2)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* (7) From functional equation: */
    {a(n)=local(A=1); for(i=1,n, A = x*A + x^3*A^3 + sqrt(1 + 4*x^4*A^4 +x*O(x^n)) ); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* (8) From explicit formula: */
    {a(n)=local(A=1); A= 1/x * serreverse( x / (x + x^3 + sqrt(1 + 4*x^4 +x*O(x^n) )) ); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n * [Sum_{k>=0} C(n+k,k)^2 *(x*A(x))^(2*k)] * (1 - x^2*A(x)^2)^(2*n+1).
(2) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(2*n) * [Sum_{k>=0} C(n+k,k)^2 * x^k].
(3) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(2*n) * [Sum_{k=0..n} C(n,k)^2 * x^k] /(1-x)^(2n+1).
(4) A(x) = exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * (x*A(x))^(2*k) ).
(5) A(x) = exp( Sum_{n>=1} (x^n/n) * ((1 + x*A(x))^(2*n) + (1 - x*A(x))^(2*n))/2 ).
(6) A(x) = 1 / sqrt((1 - x*(1 - x*A(x))^2) * (1 - x*(1 + x*A(x))^2)).
(7) A(x) = x*A(x) + x^3*A(x)^3 + sqrt(1 + 4*x^4*A(x)^4).
(8) A(x) = 1/x * Series_Reversion( x / (x + x^3 + sqrt(1 + 4*x^4)) ).

A375565 a(n) = Sum_{k=0..floor(n/3)} (n-2*k+1) * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 2, 3, 6, 17, 42, 90, 194, 441, 1006, 2242, 4950, 10974, 24376, 53961, 119048, 262337, 577782, 1271117, 2792718, 6129342, 13441616, 29454517, 64492800, 141108878, 308542280, 674238780, 1472532300, 3214268735, 7012637490, 15292425923, 33333338466, 72627184389
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2024

Keywords

Crossrefs

Programs

  • Maple
    A375565 := proc(n)
        add((n-2*k+1)*binomial(n-2*k,k)^2,k=0..floor(n/3)) ;
    end proc:
    seq(A375565(n),n=0..80) ; # R. J. Mathar, Oct 17 2024
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k+1)*binomial(n-2*k, k)^2);

Formula

G.f.: (1-x-x^3)/((1-x-x^3)^2 - 4*x^4)^(3/2).
D-finite with recurrence 3*n*(n-1)*a(n) -(8*n-3)*(n-1)*a(n-1) +(7*n^2-14*n+8)*a(n-2) +(-8*n^2+3*n+23)*a(n-3) -2*n*(n+8)*a(n-4) +4*((n-1)^2)*a(n-5) +3*n*(n+2)*a(n-6) -2*n*(n-1)*a(n-7)=0. - R. J. Mathar, Oct 17 2024

A387510 a(n) = Sum_{k=0..floor(n/3)} 2^(n-2*k) * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 2, 4, 10, 32, 104, 324, 1000, 3136, 9992, 32064, 103168, 332816, 1077152, 3497024, 11381920, 37121280, 121285760, 396922944, 1300906112, 4269367296, 14028169344, 46143475712, 151932559360, 500710965504, 1651533562368, 5451595506688, 18008220715520
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^(n-2*k) * Binomial(n-2*k, k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[2^(n-2*k)*Binomial[n-2*k,k]^2,{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^(n-2*k)*binomial(n-2*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x-2*x^3)^2 - 16*x^4).
Showing 1-10 of 11 results. Next