A387508 a(n) = Sum_{k=0..floor(n/4)} 2^k * binomial(n-3*k,k)^2.
1, 1, 1, 1, 3, 9, 19, 33, 55, 109, 243, 529, 1071, 2093, 4179, 8673, 18255, 37981, 77923, 159649, 329935, 687117, 1432403, 2977505, 6179215, 12841597, 26757059, 55840033, 116551119, 243209325, 507658803, 1060551137, 2217515151, 4639042909, 9707403811
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[(&+[2^k * Binomial(n-3*k, k)^2: k in [0..Floor(n/4)]]): n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
-
Mathematica
Table[Sum[2^k*Binomial[n-3*k, k]^2,{k,0,Floor[n/4]}],{n,0,40}] (* Vincenzo Librandi, Sep 02 2025 *)
-
PARI
a(n) = sum(k=0, n\4, 2^k*binomial(n-3*k, k)^2);
Formula
G.f.: 1/sqrt((1-x-2*x^4)^2 - 8*x^5).