cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387508 a(n) = Sum_{k=0..floor(n/4)} 2^k * binomial(n-3*k,k)^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 9, 19, 33, 55, 109, 243, 529, 1071, 2093, 4179, 8673, 18255, 37981, 77923, 159649, 329935, 687117, 1432403, 2977505, 6179215, 12841597, 26757059, 55840033, 116551119, 243209325, 507658803, 1060551137, 2217515151, 4639042909, 9707403811
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^k * Binomial(n-3*k, k)^2: k in [0..Floor(n/4)]]): n in [0..40]]; // Vincenzo Librandi, Sep 02 2025
  • Mathematica
    Table[Sum[2^k*Binomial[n-3*k, k]^2,{k,0,Floor[n/4]}],{n,0,40}] (* Vincenzo Librandi, Sep 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, 2^k*binomial(n-3*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-x-2*x^4)^2 - 8*x^5).

A387510 a(n) = Sum_{k=0..floor(n/3)} 2^(n-2*k) * binomial(n-2*k,k)^2.

Original entry on oeis.org

1, 2, 4, 10, 32, 104, 324, 1000, 3136, 9992, 32064, 103168, 332816, 1077152, 3497024, 11381920, 37121280, 121285760, 396922944, 1300906112, 4269367296, 14028169344, 46143475712, 151932559360, 500710965504, 1651533562368, 5451595506688, 18008220715520
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2025

Keywords

Crossrefs

Programs

  • Magma
    [(&+[2^(n-2*k) * Binomial(n-2*k, k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[2^(n-2*k)*Binomial[n-2*k,k]^2,{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^(n-2*k)*binomial(n-2*k, k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x-2*x^3)^2 - 16*x^4).

A387600 a(n) = (1/2) * Sum_{k=0..floor(n/3)} 2^k * binomial(2*n-4*k+2,2*k+1).

Original entry on oeis.org

1, 2, 3, 8, 25, 62, 139, 340, 877, 2186, 5311, 13056, 32497, 80566, 198595, 490092, 1212597, 2999522, 7411207, 18311384, 45265657, 111902478, 276579275, 683566148, 1689580733, 4176276794, 10322491919, 25513684656, 63061990401, 155871106406, 385266605779
Offset: 0

Views

Author

Seiichi Manyama, Sep 02 2025

Keywords

Crossrefs

Cf. A387507.

Programs

  • Magma
    [&+[2^k* Binomial(2*n-4*k+2, 2*k+1)/2: k in [0..Floor (n/3)]]: n in [0..35]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[2^k*Binomial[2*n-4*k+2, 2*k+1]/2,{k,0,Floor[n/3]}],{n,0,40}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, 2^k*binomial(2*n-4*k+2, 2*k+1))/2;
    

Formula

G.f.: B(x)^2, where B(x) is the g.f. of A387507.
G.f.: 1/((1-x-2*x^3)^2 - 8*x^4).
a(n) = 2*a(n-1) - a(n-2) + 4*a(n-3) + 4*a(n-4) - 4*a(n-6).
Showing 1-3 of 3 results.