cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331329 a(n) = binomial(5*n, n)*hypergeom([-4*n, -n], [-5*n], -1).

Original entry on oeis.org

1, 9, 145, 2625, 50049, 982729, 19665841, 398796225, 8166636545, 168502295625, 3497529199185, 72949645000065, 1527671538372225, 32100078290806665, 676451066002195825, 14290577765009652865, 302557549412667613185, 6417968867896642617225, 136371773642235542394385
Offset: 0

Views

Author

Peter Luschny, Jan 31 2020

Keywords

Comments

Special case of generalized Delannoy numbers (see cross-references):
T(n, k) = binomial(k*n, n)*hypergeom([(1-k)*n, -n], [-k*n], -1).

Crossrefs

Cf. A001850 (k=2), A026000 (k=3), A026001 (k=4), this sequence (k=5), A341491 (k=6).

Programs

  • Mathematica
    a[n_] := Binomial[5 n, n] Hypergeometric2F1[-4 n, -n, -5 n, -1];
    Array[a, 19, 0]

Formula

a(n) ~ sqrt(5 + 21/sqrt(17)) * (349 + 85*sqrt(17))^n / (sqrt(Pi*n) * 2^(5*n + 2)). - Vaclav Kotesovec, Feb 13 2021

A341470 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j,j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 41, 63, 1, 1, 9, 85, 377, 321, 1, 1, 11, 145, 1159, 3649, 1683, 1, 1, 13, 221, 2625, 16641, 36365, 8989, 1, 1, 15, 313, 4991, 50049, 246047, 369305, 48639, 1, 1, 17, 421, 8473, 118721, 982729, 3707509, 3800305, 265729, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,      1,       1, ...
  1,    3,     5,      7,      9,      11, ...
  1,   13,    41,     85,    145,     221, ...
  1,   63,   377,   1159,   2625,    4991, ...
  1,  321,  3649,  16641,  50049,  118721, ...
  1, 1683, 36365, 246047, 982729, 2908411, ...
		

Crossrefs

Columns k=0..5 give A000012, A001850, A026000, A026001, A331329, A341491.
Rows n=0..2 give A000012, A005408, A102083.
Main diagonal gives A181675(n+1).
Cf. A008288.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(k*n, n-j)*binomial(k*n+j, j));
    
  • PARI
    T(n, k) = sum(j=0, n, 2^j*binomial(n, j)*binomial(k*n, j));

Formula

T(n,k) = A008288(n,k*n).
T(n,k) = Sum_{j=0..n} 2^j * binomial(n,j) * binomial(k*n,j).
Showing 1-2 of 2 results.