A181692 The smallest positive m such that 2^m-2^n-1 is prime, or 0 if such an m does not exist.
2, 3, 3, 4, 6, 6, 8, 8, 14, 12, 14, 13, 20, 14, 18, 24, 22, 18, 20, 20, 38, 24, 42, 28, 32, 32, 50, 59, 34, 32, 44, 32, 38, 38, 36, 40, 48, 42, 40, 45, 48, 45, 56, 45, 54, 48, 76, 52, 68, 66, 100, 89, 80, 74, 80, 57, 66, 78, 98, 83, 162, 62, 166, 77, 66, 77, 72, 76, 74, 153, 80, 89, 86, 77, 94, 83, 78, 88, 110, 115, 84
Offset: 0
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 0..3000
Crossrefs
Cf. A096502.
Programs
-
Maple
A181692 := proc(n) for m from n to 100000 do if isprime(2^m-2^n-1) then return m; end if; end do: return 0 ; end proc:
-
Mathematica
m[n_]:=Module[{m=n+1},While[!PrimeQ[2^m-2^n-1],m++];m] Table[m[i],{i,90}] (* Harvey P. Dale, Dec 18 2010 *)
-
PARI
for(n=0,80, for(m=n+1,oo, k=2^m-2^n-1; if(isprime(k),print1(m,", "); break))) \\ Hugo Pfoertner, Jan 12 2020
Extensions
a(12) corrected and sequence extended by R. J. Mathar, Nov 17 2010