A181697 Length of the complete Cunningham chain of the first kind starting with prime(n).
5, 2, 4, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1
Offset: 1
Keywords
Examples
2 -> 5 -> 11 -> 23 -> 47 -> 95 = 5*19, so a(1) = 5, a(3) = 4, a(5) = 3, a(9) = 2, and a(15) = 1. - _Jonathan Sondow_, Oct 30 2015
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- G. Löh, Long chains of nearly doubled primes, Math. Comp., 53 (1989), 751-759.
- Wikipedia, Cunningham chain
Programs
-
Mathematica
Table[p = Prime[n]; cnt = 1; While[p = 2*p + 1; PrimeQ[p], cnt++]; cnt, {n, 100}] (* T. D. Noe, Jul 12 2012 *)
-
PARI
a(n)= n=prime(n); for(c=1,1e9, is/*pseudo*/prime(n=2*n+1) || return(c))
Formula
a(n) < prime(n) for n > 1; see Löh (1989), p. 751. - Jonathan Sondow, Oct 28 2015
Extensions
Definition clarified by Jonathan Sondow, Oct 28 2015
Comments