cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181697 Length of the complete Cunningham chain of the first kind starting with prime(n).

Original entry on oeis.org

5, 2, 4, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1
Offset: 1

Views

Author

M. F. Hasler, Nov 17 2010

Keywords

Comments

Number of iterations x->2x+1 needed to get a composite number, when starting with prime(n).
prime(n) is in A005384, i.e., a Sophie Germain prime, iff a(n)>1.
a(n) is the least k such that 2^k * (prime(n)+1) - 1 is composite. Note that a(n) is well defined since 2^(p-1) * (p+1) - 1 is divisible by p for odd primes p. - Jianing Song, Nov 24 2021

Examples

			2 -> 5 -> 11 -> 23 -> 47 -> 95 = 5*19, so a(1) = 5, a(3) = 4, a(5) = 3, a(9) = 2, and a(15) = 1. - _Jonathan Sondow_, Oct 30 2015
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; cnt = 1; While[p = 2*p + 1; PrimeQ[p], cnt++]; cnt, {n, 100}] (* T. D. Noe, Jul 12 2012 *)
  • PARI
    a(n)= n=prime(n); for(c=1,1e9, is/*pseudo*/prime(n=2*n+1) || return(c))

Formula

a(n) < prime(n) for n > 1; see Löh (1989), p. 751. - Jonathan Sondow, Oct 28 2015
max(a(n), A181715(n)) = A263879(n) for n > 2. - Jonathan Sondow, Oct 30 2015

Extensions

Definition clarified by Jonathan Sondow, Oct 28 2015