cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181734 G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x)^3).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 227, 832, 3126, 11980, 46646, 184003, 733783, 2953434, 11982265, 48949631, 201182110, 831292029, 3451336467, 14390479996, 60232976244, 252992172572, 1066000599632, 4504710385216, 19086728370308, 81069926894797
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 227*x^6 +...
The logarithm of the g.f. may be expressed as the series:
log(A(x)) = (1 + x*A(x)^2)*x +
(1 + 4*x*A(x)^2 + x^2*A(x)^4)*x^2/2 +
(1 + 9*x*A(x)^2 + 9*x^2*A(x)^4 + x^3*A(x)^6)*x^3/3 +
(1 + 16*x*A(x)^2 + 36*x^2*A(x)^4 + 16*x^3*A(x)^6 + x^4*A(x)^8)*x^4/4 +...
which involves the squared binomial coefficients.
		

Crossrefs

Cf. A036765.

Programs

  • Mathematica
    Table[Sum[Binomial[n+k,k]*Binomial[n+k+1, n-2k]/(n+1),{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=sum(k=0, n\2, binomial(n+k, k)*binomial(n+k+1, n-2*k))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x*A)*(1+x^2*A^3));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x*A^2+x*O(x^n))^j)*x^m/m)));polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x*A^2+x*O(x^n))^j)*(1-x*A^2)^(2*m+1)*x^m/m)));polcoeff(A, n, x)}

Formula

a(n) = Sum_{k=0..[n/2]} C(n+k, k)*C(n+k+1, n-2k)/(n+1).
G.f.: A(x) = (1/x)*Series_Reversion( x/(1+x) - x^3 ).
G.f. satisfies:
(1) A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 + x)/(1 - x^2 - x^3).
(2) A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*x^k*A(x)^(2k)] * x^n/n ).
(3) A(x) = exp( Sum_{n>=1} [Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(2k)]*(1-x*A(x)^2)^(2*n+1)* x^n/n ).
Recurrence: 23*(n-1)*n*(n+1)*(429*n^2 - 1903*n + 2004)*a(n) = 3*(n-1)*n*(12870*n^3 - 63525*n^2 + 87653*n - 28312)*a(n-1) + 3*(n-1)*(3861*n^4 - 24849*n^3 + 59286*n^2 - 61456*n + 22956)*a(n-2) + 3*(23166*n^5 - 207009*n^4 + 712578*n^3 - 1173947*n^2 + 916800*n - 266772)*a(n-3) - 3*(n-3)*(3*n - 10)*(3*n - 5)*(429*n^2 - 1045*n + 530)*a(n-4). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 1/46*(45 + 36*sqrt(3) + 23*sqrt(3429/529 + (3792*sqrt(3))/529)) = 4.50735893936524052... is the root of the equation 27 - 162*d - 27*d^2 - 90*d^3 + 23*d^4 = 0 and c = 1/(2*sqrt(-29 - 17*sqrt(3) + 5*sqrt(69 + 40*sqrt(3)))) = 0.842957337580479516110291505734... - Vaclav Kotesovec, Sep 18 2013, updated Mar 18 2024

Extensions

Name changed slightly by Paul D. Hanna, Nov 14 2012