cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A198953 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.095007017562450871521918431664620... with A(r) = 1.6228790124092133906198298670423120590101223122... where y=A(r) satisfies 2*y^5 + 6*y^4 - 18*y^3 + 6*y^2 - 3 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • Maxima
    a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(2*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A073157 (Schroeder n-paths containing no FFs).
The formal inverse of g.f. A(x) is (sqrt((1-x^2)^2 + 4*x^3) - (1+x^2)) / (2*x^3).
D-finite with recurrence: 2*n*(n+1)*(2*n+1)*(1275*n^5 - 11696*n^4 + 36827*n^3 - 40618*n^2 - 5828*n + 25368)*a(n) = 6*n*(2*n - 1)*(7650*n^6 - 66351*n^5 + 183953*n^4 - 102147*n^3 - 314787*n^2 + 450754*n - 137760)*a(n-1) - 6*(n-1)*(2*n - 3)*(34425*n^6 - 281367*n^5 + 690471*n^4 - 86579*n^3 - 1831014*n^2 + 2230808*n - 685440)*a(n-2) + 6*(22950*n^8 - 279378*n^7 + 1275447*n^6 - 2461807*n^5 + 518525*n^4 + 5756973*n^3 - 9486182*n^2 + 5962912*n - 1303680)*a(n-3) - 6*(22950*n^8 - 313803*n^7 + 1633059*n^6 - 3736233*n^5 + 1886879*n^4 + 7909228*n^3 - 16107824*n^2 + 11531408*n - 2756544)*a(n-4) + 3*(n-4)*(3*n - 14)*(3*n - 7)*(1275*n^5 - 5321*n^4 + 2793*n^3 + 12437*n^2 - 16992*n + 5328)*a(n-5). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 10.5255382776611313... is the root of the equation -27 + 108*d - 108*d^2 + 324*d^3 - 72*d^4 + 4*d^5 = 0 and c = 0.5321376859604656812266678970406658537671... - Vaclav Kotesovec, Sep 19 2013
a(n) = Sum_{j=0..n}((Sum_{k=0..j}((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1)))*(-1)^(n-j)*binomial(2*n-j,n-j)). - Vladimir Kruchinin, Mar 13 2016
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(n+2*k+1,n-k) / (n+2*k+1). - Seiichi Manyama, Jul 19 2023

A198888 G.f. A(x) satisfies A(x) = (1 + x*A(x))*(1 + x^3*A(x)^4).

Original entry on oeis.org

1, 1, 1, 2, 7, 22, 61, 172, 528, 1695, 5447, 17486, 56778, 187064, 622149, 2080325, 6990670, 23621143, 80230388, 273687898, 937072049, 3219316096, 11095261035, 38351414036, 132915860364, 461770505371, 1607875309626, 5610314558562, 19614016834508, 68696001390320, 241007011551493
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 61*x^6 + 172*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 236*x^5 + 766*x^6 +...
A(x)^5 = 1 + 5*x + 15*x^2 + 40*x^3 + 120*x^4 + 401*x^5 + 1340*x^6 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^4 + x^4*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^3)*x + (1 + 2^2*x^2*A(x)^3 + x^4*A(x)^6)*x^2/2 +
(1 + 3^2*x^2*A(x)^3 + 3^2*x^4*A(x)^6 + x^6*A(x)^9)*x^3/3 +
(1 + 4^2*x^2*A(x)^3 + 6^2*x^4*A(x)^6 + 4^2*x^6*A(x)^9 + x^8*A(x)^12)*x^4/4 +
(1 + 5^2*x^2*A(x)^3 + 10^2*x^4*A(x)^6 + 10^2*x^6*A(x)^9 + 5^2*x^8*A(x)^12 + x^10*A(x)^15)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 76*x^5/5 + 232*x^6/6 + 743*x^7/7 + 2629*x^8/8 + 9481*x^9/9 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+k,k]*Binomial[n+k+1,n-3*k]/(n+1),{k,0,Floor[n/3]}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=sum(k=0, n\3, binomial(n+k, k)*binomial(n+k+1, n-3*k))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^4)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x^2*A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x^2*A^3+x*O(x^n))^j)*(1-x^2*A^3)^(2*m+1)*x^m/m))); polcoeff(A, n, x)}

Formula

a(n) = Sum_{k=0..[n/3]} C(n+k, k)*C(n+k+1, n-3*k)/(n+1).
G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x/(1+x) - x^4 ). [Corrected by Seiichi Manyama, Dec 15 2024]
(2) A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 + x)/(1 - x^3 - x^4).
(3) A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*x^(2*k)*A(x)^(3*k)] * x^n/n ).
(4) A(x) = exp( Sum_{n>=1} [Sum_{k>=0} C(n+k,k)^2*x^(2*k)*A(x)^(3*k)]*(1-x^2*A(x)^3)^(2*n+1)* x^n/n ).
Recurrence: 283*(n-2)*(n-1)*n*(n+1)*(23959952*n^4 - 257205740*n^3 + 1013304652*n^2 - 1735060589*n + 1087154052)*a(n) = 4*(n-2)*(n-1)*n*(8529742912*n^5 - 95830114896*n^4 + 406564828744*n^3 - 799079033082*n^2 + 700270562579*n - 198783157747)*a(n-1) - 8*(n-2)*(n-1)*(8625582720*n^6 - 109845231840*n^5 + 557377471920*n^4 - 1435513153260*n^3 + 1966313576808*n^2 - 1346689501571*n + 355664911636)*a(n-2) + 32*(n-2)*(4216951552*n^7 - 64244492224*n^6 + 407865945256*n^5 - 1396107234938*n^4 + 2774470392903*n^3 - 3187035309382*n^2 + 1946241786026*n - 482103205479)*a(n-3) - 16*(n-2)*(1150077696*n^7 - 19246341696*n^6 + 133834520688*n^5 - 499899483140*n^4 + 1078973257808*n^3 - 1338172075263*n^2 + 875535465587*n - 229801752572)*a(n-4) + 8*(n-4)*(2*n - 5)*(4*n - 17)*(4*n - 11)*(23959952*n^4 - 161365932*n^3 + 385447144*n^2 - 384228697*n + 132152327)*a(n-5). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 3.686367878047643633... is the root of the equation -256 + 768*d - 5632*d^2 + 2880*d^3 - 1424*d^4 + 283*d^5 = 0 and c = 0.73361916425726935915879240304621641469885... - Vaclav Kotesovec, Sep 18 2013

A215623 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^4).

Original entry on oeis.org

1, 2, 11, 89, 836, 8551, 92445, 1039030, 12019135, 142151324, 1711116646, 20894534324, 258195565959, 3222677162409, 40569811695707, 514520507077695, 6567611974106756, 84310605465652750, 1087798325715407703, 14098475168420865396, 183465816241394787196
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.0712256396327314729661274986100... with A(r) = 1.4248895273944523042559975726479124492235978714420... where y=A(r) satisfies 3*y^7 - 4*y^6 + 16*y^5 - 28*y^4 + 8*y^3 - 4 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + 8551*x^5 + 92445*x^6 + ...
Related expansions.
A(x)^4 = 1 + 8*x + 68*x^2 + 652*x^3 + 6750*x^4 + 73544*x^5 + 831078*x^6 + ...
A(x)^5 = 1 + 10*x + 95*x^2 + 965*x^3 + 10350*x^4 + 115507*x^5 + ...
where A(x) = 1 + x*(A(x) + A(x)^4) + x^2*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^3)*x + (1 + 2^2*A(x)^3 + A(x)^6)*x^2/2 +
  (1 + 3^2*A(x)^3 + 3^2*A(x)^6 + A(x)^9)*x^3/3 +
  (1 + 4^2*A(x)^3 + 6^2*A(x)^6 + 4^2*A(x)^9 + A(x)^12)*x^4/4 +
  (1 + 5^2*A(x)^3 + 10^2*A(x)^6 + 10^2*A(x)^9 + 5^2*A(x)^12 + A(x)^15)*x^5/5 + ...
more explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 209*x^3/3 + 2550*x^4/4 + 32082*x^5/5 + 411705*x^6/6 + 5356416*x^7/7 + ....
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(3*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^4)+x*O(x^n)); polcoeff(A, n)}
    for(n=0,21,print1(a(n),", "))

Formula

G.f. satisfies A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(3*k)).
The formal inverse of g.f. A(x) is (sqrt((1-x^3)^2 + 4*x^4) - (1+x^3))/(2*x^4).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(n+3*k+1,n-k) / (n+3*k+1). - Seiichi Manyama, Jul 19 2023
From Peter Bala, Sep 10 2024: (Start)
x/series_reversion(x*A(x)) = 1 + 2*x + 7*x^2 + 39*x^3 + 242*x^4 + 1634*x^5 + ..., the g.f. of A364336.
(1/x) * series_reversion(x/A(x)) = 1 + 2*x + 15*x^2 + 163*x^3 + 2070*x^4 + 28698*x^5 + ..., the g.f. of A364331. (End)

A215624 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^5).

Original entry on oeis.org

1, 2, 13, 130, 1518, 19358, 261323, 3670828, 53100530, 785657529, 11834135909, 180863294507, 2797643204500, 43715591710804, 689030031494554, 10941710269299893, 174889301792724294, 2811464199460768704, 45426696813655278251
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.05685644444171304880925020950930... with A(r) = 1.3208055627586104770123863310077013110788003146438630... where y=A(r) satisfies 4*y^9 - 5*y^8 + 25*y^6 - 40*y^5 + 10*y^4 - 5 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 130*x^3 + 1518*x^4 + 19358*x^5 +...
Related expansions.
A(x)^5 = 1 + 10*x + 105*x^2 + 1250*x^3 + 16120*x^4 + 219162*x^5 +...
A(x)^6 = 1 + 12*x + 138*x^2 + 1720*x^3 + 22803*x^4 + 315840*x^5 +...
where A(x) = 1 + x*(A(x) + A(x)^5) + x^2*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^4)*x + (1 + 2^2*A(x)^4 + A(x)^8)*x^2/2 +
  (1 + 3^2*A(x)^4 + 3^2*A(x)^8 + A(x)^12)*x^3/3 +
  (1 + 4^2*A(x)^4 + 6^2*A(x)^8 + 4^2*A(x)^12 + A(x)^16)*x^4/4 +
  (1 + 5^2*A(x)^4 + 10^2*A(x)^8 + 10^2*A(x)^12 + 5^2*A(x)^16 + A(x)^20)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 22*x^2/2 + 320*x^3/3 + 4886*x^4/4 + 76962*x^5/5 + 1236784*x^6/6 + 20152260*x^7/7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(4*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^5)+x*O(x^n)); polcoeff(A, n)}
    for(n=0,21,print1(a(n),", "))

Formula

G.f. satisfies A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(4*k)).
The formal inverse of g.f. A(x) is (sqrt((1-x^4)^2 + 4*x^5) - (1+x^4))/(2*x^5).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(n+4*k+1,n-k) / (n+4*k+1). - Seiichi Manyama, Jul 19 2023

A274379 G.f. satisfies A(x) = (1 + x*A(x))^3 * (1 + x^2*A(x)^3).

Original entry on oeis.org

1, 3, 13, 70, 429, 2842, 19794, 142758, 1056655, 7980280, 61251261, 476387379, 3746317414, 29738316330, 237968639936, 1917578268288, 15546796822656, 126728260011920, 1037987924978125, 8538459191677170, 70509828893263474, 584310452973463242, 4857624566855734836, 40501472981905806550, 338594135314564168494, 2837641019938074131463, 23835438376045780734390, 200633658871150345742269, 1692132786239339256115050, 14297391426538004065333910, 121009206594941545408186768
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2016

Keywords

Examples

			 G.f.: A(x) = 1 + 3*x + 13*x^2 + 70*x^3 + 429*x^4 + 2842*x^5 + 19794*x^6 + 142758*x^7 + 1056655*x^8 + 7980280*x^9 + ...
such that A(x) = 1 + 3*x*A(x) + x^2*(3*A(x)^2 + A(x)^3) + x^3*(A(x)^3 + 3*A(x)^4) + 3*x^4*A(x)^5 + x^5*A(x)^6.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1, n, A = (1 + x*A)^3 * (1 + x^2*A^3) + x*O(x^n) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x^2*(1+x)^3)/(1+x +x^2*O(x^n) )^3 ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = (1/x) * Series_Reversion( x*(1 - x^2*(1+x)^3) / (1+x)^3 ).
G.f. satisfies: A( x*(1 - x^2*(1+x)^3)/(1+x)^3 ) = (1+x)^3/(1 - x^2*(1+x)^3).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(3*n+3*k+3,n-2*k). - Seiichi Manyama, Jan 27 2024

A274734 G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x*A(x)^2).

Original entry on oeis.org

1, 3, 15, 94, 661, 4983, 39363, 321587, 2694860, 23035341, 200068651, 1760558682, 15663027711, 140648129383, 1273083938979, 11603500739475, 106404140837773, 980977232554344, 9087285865886766, 84541177049414342, 789545725457924023, 7399515198155161271, 69568021610270590583, 655960254857760518109, 6201585037793334756198, 58775103307105512895151
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2016

Keywords

Comments

More generally, if G(x) satisfies
G(x) = (1 + a*x*G(x))^m * (1 + b*x*G(x)^2), then
G(x) = (1/x) * Series_Reversion( x * (1 - b*x*(1 + a*x)^m) / (1 + a*x)^m ).

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 94*x^3 + 661*x^4 + 4983*x^5 + 39363*x^6 + 321587*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = (1 + x*A)^2 * (1 + x*A^2) + x*O(x^n) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x*(1+x)^2)/(1+x +x^2*O(x^n) )^2 ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1/x) * Series_Reversion( x * (1 - x*(1+x)^2) / (1+x)^2 ).
Recurrence: 31*(n-1)*n*(n+1)*(5974*n^3 - 40359*n^2 + 90115*n - 67124)*a(n) = 2*(n-1)*n*(1003632*n^4 - 7282128*n^3 + 18518502*n^2 - 18822839*n + 5649607)*a(n-1) - 2*(n-1)*(740776*n^5 - 6486068*n^4 + 21715762*n^3 - 34616651*n^2 + 26123385*n - 7413210)*a(n-2) + 2*(2*n - 5)*(65714*n^5 - 575377*n^4 + 1957337*n^3 - 3264653*n^2 + 2726129*n - 941430)*a(n-3) + 4*(n-3)*(2*n - 7)*(2*n - 5)*(5974*n^3 - 22437*n^2 + 27319*n - 11394)*a(n-4). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ sqrt((s*(1+r*s)*(2 + s + 3*r*s^2)) / (1 + r*(1 + 6*s*(1+r*s)))) / (2*sqrt(Pi) * n^(3/2) * r^n), where r = 0.099424837262345547872398211374352678... and s = 2.183663565361369673488934371066403742... are roots of the system of equations (1 + r*s)^2*(1 + r*s^2) = s, 2*r*(1 + s + 2*r^2*s^3 + r*s*(1 + 3*s)) = 1. - Vaclav Kotesovec, Nov 18 2017
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(2*n+2*k+2,n-k). - Seiichi Manyama, Jan 27 2024

A274378 G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x^2*A(x)^3).

Original entry on oeis.org

1, 2, 6, 24, 111, 552, 2873, 15458, 85312, 480314, 2747845, 15928080, 93347153, 552181372, 3292571913, 19769887128, 119430685503, 725375643416, 4426786390959, 27131644746326, 166932630227613, 1030684209393288, 6383992918008611, 39657230694169284, 247008096338698523, 1542292860296588558, 9651791500807437834, 60528789932966226468, 380333245334293851637, 2394179659042901060436, 15096873553004201457425
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2016

Keywords

Examples

			 G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 111*x^4 + 552*x^5 + 2873*x^6 + 15458*x^7 + 85312*x^8 +...
such that A(x) = 1 + 2*x*A(x) + x^2*(A(x)^2 + A(x)^3) + 2*x^3*A(x)^4 + x^4*A(x)^5.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1, n, A = (1 + x*A)^2 * (1 + x^2*A^3) + x*O(x^n) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x^2*(1+x)^2)/(1+x +x^2*O(x^n) )^2 ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = (1/x) * Series_Reversion( x*(1 - x^2*(1+x)^2) / (1+x)^2 ).
G.f. satisfies: A( x*(1 - x^2*(1+x)^2)/(1+x)^2 ) = (1+x)^2/(1 - x^2*(1+x)^2).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(2*n+2*k+2,n-2*k). - Seiichi Manyama, Jan 27 2024

A379080 Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^2)^2 ).

Original entry on oeis.org

1, 2, 7, 32, 163, 886, 5039, 29616, 178446, 1096356, 6842452, 43259122, 276462247, 1783114592, 11591769207, 75874998822, 499643588823, 3307746965238, 22001986381873, 146972401234478, 985535271867577, 6631547191254298, 44763982636889092, 303037237861086682
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n\2, binomial(2*n+k+2, k)*binomial(2*n+k+2, n-2*k)/(2*n+k+2));

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{k>=1} A379084(k) * x^k/k ).
(2) A(x) = ( (1 + x*A(x)) * (1 + x^2*A(x)^(5/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A200719.
a(n) = (1/(n+1)) * [x^n] 1/( 1/(1 + x) - x^2 )^(2*(n+1)).
a(n) = 2 * Sum_{k=0..floor(n/2)} binomial(2*n+k+2,k) * binomial(2*n+k+2,n-2*k)/(2*n+k+2) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(2*n+k+2,n-2*k).

A379081 Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^2)^3 ).

Original entry on oeis.org

1, 3, 15, 94, 657, 4905, 38299, 308928, 2554092, 21528728, 184318944, 1598427531, 14011401996, 123946608699, 1105090991634, 9920335032821, 89589290332200, 813367589142888, 7419376746340780, 67965042988027335, 624971955439306953, 5766825797557702751, 53380176096582823851
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n\2, binomial(3*n+k+3, k)*binomial(3*n+k+3, n-2*k)/(3*n+k+3));

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{k>=1} A379086(k) * x^k/k ).
(2) A(x) = ( (1 + x*A(x)) * (1 + x^2*A(x)^(7/3)) )^3.
(3) A(x) = B(x)^3 where B(x) is the g.f. of A379088.
a(n) = (1/(n+1)) * [x^n] 1/( 1/(1 + x) - x^2 )^(3*(n+1)).
a(n) = 3 * Sum_{k=0..floor(n/2)} binomial(3*n+k+3,k) * binomial(3*n+k+3,n-2*k)/(3*n+k+3) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(3*n+k+3,n-2*k).
Showing 1-9 of 9 results.