A198953
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).
Original entry on oeis.org
1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
-
a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
A198888
G.f. A(x) satisfies A(x) = (1 + x*A(x))*(1 + x^3*A(x)^4).
Original entry on oeis.org
1, 1, 1, 2, 7, 22, 61, 172, 528, 1695, 5447, 17486, 56778, 187064, 622149, 2080325, 6990670, 23621143, 80230388, 273687898, 937072049, 3219316096, 11095261035, 38351414036, 132915860364, 461770505371, 1607875309626, 5610314558562, 19614016834508, 68696001390320, 241007011551493
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 61*x^6 + 172*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 236*x^5 + 766*x^6 +...
A(x)^5 = 1 + 5*x + 15*x^2 + 40*x^3 + 120*x^4 + 401*x^5 + 1340*x^6 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^4 + x^4*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^3)*x + (1 + 2^2*x^2*A(x)^3 + x^4*A(x)^6)*x^2/2 +
(1 + 3^2*x^2*A(x)^3 + 3^2*x^4*A(x)^6 + x^6*A(x)^9)*x^3/3 +
(1 + 4^2*x^2*A(x)^3 + 6^2*x^4*A(x)^6 + 4^2*x^6*A(x)^9 + x^8*A(x)^12)*x^4/4 +
(1 + 5^2*x^2*A(x)^3 + 10^2*x^4*A(x)^6 + 10^2*x^6*A(x)^9 + 5^2*x^8*A(x)^12 + x^10*A(x)^15)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 76*x^5/5 + 232*x^6/6 + 743*x^7/7 + 2629*x^8/8 + 9481*x^9/9 +...
-
Table[Sum[Binomial[n+k,k]*Binomial[n+k+1,n-3*k]/(n+1),{k,0,Floor[n/3]}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=sum(k=0, n\3, binomial(n+k, k)*binomial(n+k+1, n-3*k))/(n+1)}
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^4)); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x^2*A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x^2*A^3+x*O(x^n))^j)*(1-x^2*A^3)^(2*m+1)*x^m/m))); polcoeff(A, n, x)}
A215623
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^4).
Original entry on oeis.org
1, 2, 11, 89, 836, 8551, 92445, 1039030, 12019135, 142151324, 1711116646, 20894534324, 258195565959, 3222677162409, 40569811695707, 514520507077695, 6567611974106756, 84310605465652750, 1087798325715407703, 14098475168420865396, 183465816241394787196
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + 8551*x^5 + 92445*x^6 + ...
Related expansions.
A(x)^4 = 1 + 8*x + 68*x^2 + 652*x^3 + 6750*x^4 + 73544*x^5 + 831078*x^6 + ...
A(x)^5 = 1 + 10*x + 95*x^2 + 965*x^3 + 10350*x^4 + 115507*x^5 + ...
where A(x) = 1 + x*(A(x) + A(x)^4) + x^2*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^3)*x + (1 + 2^2*A(x)^3 + A(x)^6)*x^2/2 +
(1 + 3^2*A(x)^3 + 3^2*A(x)^6 + A(x)^9)*x^3/3 +
(1 + 4^2*A(x)^3 + 6^2*A(x)^6 + 4^2*A(x)^9 + A(x)^12)*x^4/4 +
(1 + 5^2*A(x)^3 + 10^2*A(x)^6 + 10^2*A(x)^9 + 5^2*A(x)^12 + A(x)^15)*x^5/5 + ...
more explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 209*x^3/3 + 2550*x^4/4 + 32082*x^5/5 + 411705*x^6/6 + 5356416*x^7/7 + ....
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(3*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^4)+x*O(x^n)); polcoeff(A, n)}
for(n=0,21,print1(a(n),", "))
A215624
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 13, 130, 1518, 19358, 261323, 3670828, 53100530, 785657529, 11834135909, 180863294507, 2797643204500, 43715591710804, 689030031494554, 10941710269299893, 174889301792724294, 2811464199460768704, 45426696813655278251
Offset: 0
G.f.: A(x) = 1 + 2*x + 13*x^2 + 130*x^3 + 1518*x^4 + 19358*x^5 +...
Related expansions.
A(x)^5 = 1 + 10*x + 105*x^2 + 1250*x^3 + 16120*x^4 + 219162*x^5 +...
A(x)^6 = 1 + 12*x + 138*x^2 + 1720*x^3 + 22803*x^4 + 315840*x^5 +...
where A(x) = 1 + x*(A(x) + A(x)^5) + x^2*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^4)*x + (1 + 2^2*A(x)^4 + A(x)^8)*x^2/2 +
(1 + 3^2*A(x)^4 + 3^2*A(x)^8 + A(x)^12)*x^3/3 +
(1 + 4^2*A(x)^4 + 6^2*A(x)^8 + 4^2*A(x)^12 + A(x)^16)*x^4/4 +
(1 + 5^2*A(x)^4 + 10^2*A(x)^8 + 10^2*A(x)^12 + 5^2*A(x)^16 + A(x)^20)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 22*x^2/2 + 320*x^3/3 + 4886*x^4/4 + 76962*x^5/5 + 1236784*x^6/6 + 20152260*x^7/7 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(4*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^5)+x*O(x^n)); polcoeff(A, n)}
for(n=0,21,print1(a(n),", "))
A274379
G.f. satisfies A(x) = (1 + x*A(x))^3 * (1 + x^2*A(x)^3).
Original entry on oeis.org
1, 3, 13, 70, 429, 2842, 19794, 142758, 1056655, 7980280, 61251261, 476387379, 3746317414, 29738316330, 237968639936, 1917578268288, 15546796822656, 126728260011920, 1037987924978125, 8538459191677170, 70509828893263474, 584310452973463242, 4857624566855734836, 40501472981905806550, 338594135314564168494, 2837641019938074131463, 23835438376045780734390, 200633658871150345742269, 1692132786239339256115050, 14297391426538004065333910, 121009206594941545408186768
Offset: 0
G.f.: A(x) = 1 + 3*x + 13*x^2 + 70*x^3 + 429*x^4 + 2842*x^5 + 19794*x^6 + 142758*x^7 + 1056655*x^8 + 7980280*x^9 + ...
such that A(x) = 1 + 3*x*A(x) + x^2*(3*A(x)^2 + A(x)^3) + x^3*(A(x)^3 + 3*A(x)^4) + 3*x^4*A(x)^5 + x^5*A(x)^6.
-
{a(n) = my(A=1); for(i=1, n, A = (1 + x*A)^3 * (1 + x^2*A^3) + x*O(x^n) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x^2*(1+x)^3)/(1+x +x^2*O(x^n) )^3 ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A274734
G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x*A(x)^2).
Original entry on oeis.org
1, 3, 15, 94, 661, 4983, 39363, 321587, 2694860, 23035341, 200068651, 1760558682, 15663027711, 140648129383, 1273083938979, 11603500739475, 106404140837773, 980977232554344, 9087285865886766, 84541177049414342, 789545725457924023, 7399515198155161271, 69568021610270590583, 655960254857760518109, 6201585037793334756198, 58775103307105512895151
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 94*x^3 + 661*x^4 + 4983*x^5 + 39363*x^6 + 321587*x^7 +...
-
{a(n) = my(A=1); for(i=1,n, A = (1 + x*A)^2 * (1 + x*A^2) + x*O(x^n) ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x*(1+x)^2)/(1+x +x^2*O(x^n) )^2 ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A274378
G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x^2*A(x)^3).
Original entry on oeis.org
1, 2, 6, 24, 111, 552, 2873, 15458, 85312, 480314, 2747845, 15928080, 93347153, 552181372, 3292571913, 19769887128, 119430685503, 725375643416, 4426786390959, 27131644746326, 166932630227613, 1030684209393288, 6383992918008611, 39657230694169284, 247008096338698523, 1542292860296588558, 9651791500807437834, 60528789932966226468, 380333245334293851637, 2394179659042901060436, 15096873553004201457425
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 111*x^4 + 552*x^5 + 2873*x^6 + 15458*x^7 + 85312*x^8 +...
such that A(x) = 1 + 2*x*A(x) + x^2*(A(x)^2 + A(x)^3) + 2*x^3*A(x)^4 + x^4*A(x)^5.
-
{a(n) = my(A=1); for(i=1, n, A = (1 + x*A)^2 * (1 + x^2*A^3) + x*O(x^n) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x^2*(1+x)^2)/(1+x +x^2*O(x^n) )^2 ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A379080
Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^2)^2 ).
Original entry on oeis.org
1, 2, 7, 32, 163, 886, 5039, 29616, 178446, 1096356, 6842452, 43259122, 276462247, 1783114592, 11591769207, 75874998822, 499643588823, 3307746965238, 22001986381873, 146972401234478, 985535271867577, 6631547191254298, 44763982636889092, 303037237861086682
Offset: 0
-
a(n) = 2*sum(k=0, n\2, binomial(2*n+k+2, k)*binomial(2*n+k+2, n-2*k)/(2*n+k+2));
A379081
Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^2)^3 ).
Original entry on oeis.org
1, 3, 15, 94, 657, 4905, 38299, 308928, 2554092, 21528728, 184318944, 1598427531, 14011401996, 123946608699, 1105090991634, 9920335032821, 89589290332200, 813367589142888, 7419376746340780, 67965042988027335, 624971955439306953, 5766825797557702751, 53380176096582823851
Offset: 0
-
a(n) = 3*sum(k=0, n\2, binomial(3*n+k+3, k)*binomial(3*n+k+3, n-2*k)/(3*n+k+3));
Showing 1-9 of 9 results.
Comments