A198953
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).
Original entry on oeis.org
1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
-
a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
A215654
G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^3).
Original entry on oeis.org
1, 2, 11, 81, 684, 6257, 60325, 603641, 6210059, 65272503, 697898849, 7566847547, 82999675563, 919376968734, 10269588489433, 115548651723889, 1308374198000780, 14897993185500455, 170482798370871370, 1959574731164246402, 22614008012647634411, 261915716386286916342
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 81*x^3 + 684*x^4 + 6257*x^5 + 60325*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 26*x^2 + 206*x^3 + 1813*x^4 + 17032*x^5 +...
A(x)^3 = 1 + 6*x + 45*x^2 + 383*x^3 + 3519*x^4 + 34023*x^5 +...
A(x)^5 = 1 + 10*x + 95*x^2 + 925*x^3 + 9270*x^4 + 95237*x^5 +...
where A(x) = 1 + x*(A(x)^2 + A(x)^3) + x^2*A(x)^5.
The g.f. also satisfies the series:
A(x) = 1 + 2*x*A(x)^2 + 3*x^2*A(x)^4 + 5*x^3*A(x)^6 + 8*x^4*A(x)^8 + 13*x^5*A(x)^10 + 21*x^6*A(x)^12 + 34*x^7*A(x)^14 +...+ Fibonacci(n+2)*x^n*A(x)^(2*n) +...
and consequently, A( x*(1-x-x^2)^2/(1+x)^2 ) = (1+x)/(1-x-x^2).
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x))*x*A(x) + (1 + 2^2*A(x) + A(x)^2)*x^2*A(x)^2/2 +
(1 + 3^2*A(x) + 3^2*A(x)^2 + A(x)^3)*x^3*A(x)^3/3 +
(1 + 4^2*A(x) + 6^2*A(x)^2 + 4^2*A(x)^3 + A(x)^4)*x^4*A(x)^4/4 +
(1 + 5^2*A(x) + 10^2*A(x)^2 + 10^2*A(x)^3 + 5^2*A(x)^4 + A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 185*x^3/3 + 2006*x^4/4 + 22412*x^5/5 + 255249*x^6/6 + 2946155*x^7/7 + 34342270*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^(2*n)/(1-x-x^2)^(2*n) / 2.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233. - _N. J. A. Sloane_, Mar 26 2014
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
-
a:= n-> coeff(series(RootOf((1+x*A^2)*(1+x*A^3)-A, A), x, n+1), x, n):
seq(a(n), n=0..33); # Alois P. Heinz, Apr 04 2019
-
CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-x-x^2)^2/(1+x)^2,{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
a(n):=sum(binomial(2*n+i,i)*binomial(2*n+i+1,n-i),i,0,n)/(2*n+1); /* Vladimir Kruchinin, Apr 04 2019 */
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^3)); polcoeff(A, n)}
-
{a(n)=polcoeff(sqrt((1/x)*serreverse( x*(1-x-x^2)^2/(1+x +x*O(x^n))^2)), n)}
for(n=0,31,print1(a(n),", "))
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^m/m))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)}
-
{a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(2*n+1)/(2*n+1),n)}
A364338
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 11, 105, 1140, 13555, 170637, 2235472, 30161255, 416248640, 5848462880, 83378361111, 1203100853951, 17537182300140, 257858115407535, 3819894878557990, 56958234329850060, 854192593184162160, 12875579347191388830, 194963091634569681550, 2964229359714424159370, 45234864131654311730160
Offset: 0
-
terms = 22; A[] = 0; Do[A[x] = (1+x)(1+x*A[x]^5) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 24 2025 *)
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(5*k+1, n-k)/(5*k+1));
A215623
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^4).
Original entry on oeis.org
1, 2, 11, 89, 836, 8551, 92445, 1039030, 12019135, 142151324, 1711116646, 20894534324, 258195565959, 3222677162409, 40569811695707, 514520507077695, 6567611974106756, 84310605465652750, 1087798325715407703, 14098475168420865396, 183465816241394787196
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + 8551*x^5 + 92445*x^6 + ...
Related expansions.
A(x)^4 = 1 + 8*x + 68*x^2 + 652*x^3 + 6750*x^4 + 73544*x^5 + 831078*x^6 + ...
A(x)^5 = 1 + 10*x + 95*x^2 + 965*x^3 + 10350*x^4 + 115507*x^5 + ...
where A(x) = 1 + x*(A(x) + A(x)^4) + x^2*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^3)*x + (1 + 2^2*A(x)^3 + A(x)^6)*x^2/2 +
(1 + 3^2*A(x)^3 + 3^2*A(x)^6 + A(x)^9)*x^3/3 +
(1 + 4^2*A(x)^3 + 6^2*A(x)^6 + 4^2*A(x)^9 + A(x)^12)*x^4/4 +
(1 + 5^2*A(x)^3 + 10^2*A(x)^6 + 10^2*A(x)^9 + 5^2*A(x)^12 + A(x)^15)*x^5/5 + ...
more explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 209*x^3/3 + 2550*x^4/4 + 32082*x^5/5 + 411705*x^6/6 + 5356416*x^7/7 + ....
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(3*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^4)+x*O(x^n)); polcoeff(A, n)}
for(n=0,21,print1(a(n),", "))
A364331
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
Offset: 0
-
A364331 := proc(n)
add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ;
end proc:
seq(A364331(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));
A216359
G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x/A(x)).
Original entry on oeis.org
1, 2, 3, 13, 32, 147, 445, 2067, 7019, 32590, 119209, 551551, 2125429, 9795863, 39221165, 180177403, 742575760, 3403131833, 14342166121, 65626369612, 281459129188, 1286834885967, 5596229192396, 25580269950635, 112492633046446, 514323765191879, 2282371511598955
Offset: 0
G.f.: A(x) = 1 + 2*x + 3*x^2 + 13*x^3 + 32*x^4 + 147*x^5 + 445*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 10*x^2 + 38*x^3 + 125*x^4 + 500*x^5 + 1839*x^6 +...
A(x)^3 = 1 + 6*x + 21*x^2 + 83*x^3 + 315*x^4 + 1269*x^5 + 5061*x^6 +...
where A(x) = (1-x^2)*A(x)^2 - x*A(x)^3 - x.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + 1/A(x)^3)*x*A(x) + (1 + 2^2/A(x)^3 + 1/A(x)^6)*x^2*A(x)^2/2 +
(1 + 3^2/A(x)^3 + 3^2/A(x)^6 + 1/A(x)^9)*x^3*A(x)^3/3 +
(1 + 4^2/A(x)^3 + 6^2/A(x)^6 + 4^2/A(x)^9 + 1/A(x)^12)*x^4*A(x)^4/4 +
(1 + 5^2/A(x)^3 + 10^2/A(x)^6 + 10^2/A(x)^9 + 5^2/A(x)^12 + 1/A(x)^15)*x^5*A(x)^5/5 +...
-
S:= series(RootOf(x+y+x^2*y^2-y^2+x*y^3, y, 1), x, 41):
seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1-x^2)*AGF^2 - x*AGF^3 - x - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A^2)*(1 + x/(A+x*O(x^n)))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(3*j))*x^m*A^m/m))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
A364335
G.f. satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 17, 204, 2852, 43489, 701438, 11767095, 203223146, 3589167533, 64524575635, 1176860764416, 21723084076739, 405038036077647, 7617437252889030, 144328483391622298, 2752414654270742784, 52790626691557217602, 1017655117382823639414, 19706520281177438174530
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+2*k+1, k)*binomial(3*n+2*k+1, n-k)/(3*n+2*k+1));
A364340
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^6).
Original entry on oeis.org
1, 2, 15, 179, 2502, 38262, 619991, 10459410, 181771289, 3231782239, 58505593456, 1074766446526, 19984671314164, 375414901633692, 7113886504446443, 135820770971898805, 2610186429457347486, 50452256583633573513, 980187901557594671335, 19130197594133100828170, 374894511736219913097375
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+5*k+1, k)*binomial(n+5*k+1, n-k)/(n+5*k+1));
Showing 1-8 of 8 results.
Comments