cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A198953 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.095007017562450871521918431664620... with A(r) = 1.6228790124092133906198298670423120590101223122... where y=A(r) satisfies 2*y^5 + 6*y^4 - 18*y^3 + 6*y^2 - 3 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • Maxima
    a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(2*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A073157 (Schroeder n-paths containing no FFs).
The formal inverse of g.f. A(x) is (sqrt((1-x^2)^2 + 4*x^3) - (1+x^2)) / (2*x^3).
D-finite with recurrence: 2*n*(n+1)*(2*n+1)*(1275*n^5 - 11696*n^4 + 36827*n^3 - 40618*n^2 - 5828*n + 25368)*a(n) = 6*n*(2*n - 1)*(7650*n^6 - 66351*n^5 + 183953*n^4 - 102147*n^3 - 314787*n^2 + 450754*n - 137760)*a(n-1) - 6*(n-1)*(2*n - 3)*(34425*n^6 - 281367*n^5 + 690471*n^4 - 86579*n^3 - 1831014*n^2 + 2230808*n - 685440)*a(n-2) + 6*(22950*n^8 - 279378*n^7 + 1275447*n^6 - 2461807*n^5 + 518525*n^4 + 5756973*n^3 - 9486182*n^2 + 5962912*n - 1303680)*a(n-3) - 6*(22950*n^8 - 313803*n^7 + 1633059*n^6 - 3736233*n^5 + 1886879*n^4 + 7909228*n^3 - 16107824*n^2 + 11531408*n - 2756544)*a(n-4) + 3*(n-4)*(3*n - 14)*(3*n - 7)*(1275*n^5 - 5321*n^4 + 2793*n^3 + 12437*n^2 - 16992*n + 5328)*a(n-5). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 10.5255382776611313... is the root of the equation -27 + 108*d - 108*d^2 + 324*d^3 - 72*d^4 + 4*d^5 = 0 and c = 0.5321376859604656812266678970406658537671... - Vaclav Kotesovec, Sep 19 2013
a(n) = Sum_{j=0..n}((Sum_{k=0..j}((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1)))*(-1)^(n-j)*binomial(2*n-j,n-j)). - Vladimir Kruchinin, Mar 13 2016
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(n+2*k+1,n-k) / (n+2*k+1). - Seiichi Manyama, Jul 19 2023

A364336 G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 7, 39, 242, 1634, 11631, 85957, 653245, 5072862, 40077807, 321106623, 2602911282, 21308131235, 175909559897, 1462846379247, 12242600576066, 103035285071630, 871490142773640, 7404121610615520, 63157400073057627, 540689217572662413, 4644083121177225292
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2023

Keywords

Crossrefs

Programs

  • Maple
    A364336 := proc(n)
        add( binomial(3*k+1,k) * binomial(3*k+1,n-k)/(3*k+1),k=0..n) ;
    end proc:
    seq(A364336(n),n=0..80); # R. J. Mathar, Jul 25 2023
  • Mathematica
    nmax = 80; A[_] = 1;
    Do[A[x_] = (1 + x)*(1 + x*A[x]^3) + O[x]^(nmax+1) // Normal, {nmax+1}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(3*k+1, n-k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*k+1,k) * binomial(3*k+1,n-k) / (3*k+1).
D-finite with recurrence -2*n*(2*n+1)*a(n) +(3*n^2+23*n-14)*a(n-1) +(207*n^2 -635*n +494)*a(n-2) +2*(397*n^2 -2031*n +2600)*a(n-3) +6*(75*n-244) *(3*n-11)*a(n-4) +9*(45*n-179) *(3*n-14)*a(n-5) +63*(3*n-14) *(3*n-17)*a(n-6) +12*(3*n-16) *(3*n-20)*a(n-7)=0. - R. J. Mathar, Jul 25 2023
From Peter Bala, Sep 10 2024: (Start)
x/series_reversion(x*A(x)) = 1 + 2*x + 3*x^2 + 13*x^3 + 32*x^4 + 147*x^5 + ..., the g.f. of A216359.
(1/x) * series_reversion(x/A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + 8551*x^5 + ..., the g.f. of A215623. (End)

A245049 Number A(n,k) of hybrid k-ary trees with n internal nodes; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 7, 5, 1, 2, 11, 31, 8, 1, 2, 15, 81, 154, 13, 1, 2, 19, 155, 684, 820, 21, 1, 2, 23, 253, 1854, 6257, 4575, 34, 1, 2, 27, 375, 3920, 24124, 60325, 26398, 55, 1, 2, 31, 521, 7138, 66221, 331575, 603641, 156233, 89, 1, 2, 35, 691, 11764, 148348, 1183077, 4736345, 6210059, 943174, 144
Offset: 0

Views

Author

Alois P. Heinz, Jul 10 2014

Keywords

Examples

			Square array A(n,k) begins:
   1,    1,     1,      1,       1,       1,       1, ...
   2,    2,     2,      2,       2,       2,       2, ...
   3,    7,    11,     15,      19,      23,      27, ...
   5,   31,    81,    155,     253,     375,     521, ...
   8,  154,   684,   1854,    3920,    7138,   11764, ...
  13,  820,  6257,  24124,   66221,  148348,  290305, ...
  21, 4575, 60325, 331575, 1183077, 3262975, 7585749, ...
		

Crossrefs

Rows n=0-2 give: A000012, A007395, A004767(k-1).
Main diagonal gives A245054.

Programs

  • Maple
    A:= (n, k)-> add(binomial((k-1)*n+i, i)*
        binomial((k-1)*n+i+1, n-i), i=0..n)/((k-1)*n+1):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := Sum[Binomial[(k-1)*n+i, i]*Binomial[(k-1)*n+i+1, n-i], {i, 0, n}]/((k-1)*n+1); Table[A[n, 1+d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)

Formula

A(n,k) = 1/((k-1)*n+1) * Sum_{i=0..n} C((k-1)*n+i,i)*C((k-1)*n+i+1,n-i).
A(n,k) = [x^n] ((1+x)/(1-x-x^2))^((k-1)*n+1) / ((k-1)*n+1).
G.f. for column k satisfies: A_k(x) = (1+x*A_k(x)^(k-1)) * (1+x*A_k(x)^k).

A239108 Number of hybrid 5-ary trees with n internal nodes.

Original entry on oeis.org

1, 2, 19, 253, 3920, 66221, 1183077, 21981764, 420449439, 8223704755, 163727846678, 3307039145618, 67600147666909, 1395822347989531, 29070233296701815, 609950649080323320, 12881240945694949696, 273590092192962485985, 5840400740191969187922
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (1/x InverseSeries[x(1 - x - x^2)^4/(1 + x)^4 + O[x]^20])^(1/4) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^4)*(1 + x*A^5)); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^4/(1+x +x*O(x^n))^4))^(1/4), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(3*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(4*n+1)/(4*n+1), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

Formula

From Paul D. Hanna, Mar 30 2014: (Start)
G.f. A(x) satisfies:
(1) A(x) = (1 + x*A(x)^4) * (1 + x*A(x)^5).
(2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^4/(1+x)^4 ) )^(1/4).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(4*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(4*n).
(6) A(x) = G(x*A(x)^3) where G(x) = A(x/G(x)^3) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^5).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(4*n+1) / (4*n+1).
(End)

A239109 Number of hybrid 6-ary trees with n internal nodes.

Original entry on oeis.org

1, 2, 23, 375, 7138, 148348, 3262975, 74673216, 1759690865, 42412172598, 1040644972314, 25907046248766, 652763779424538, 16614703783094140, 426563932954831827, 11033640140115676862, 287265076610919864178, 7522060666571155198520, 197969862318742854908470
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (1/x InverseSeries[x*(1 - x - x^2)^5/(1 + x)^5 + O[x]^20])^(1/5) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^5)*(1 + x*A^6)); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^5/(1+x +x*O(x^n))^5))^(1/5), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(5*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(5*n+1)/(5*n+1), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

Formula

From Paul D. Hanna, Mar 30 2014: (Start)
G.f. A(x) satisfies:
(1) A(x) = (1 + x*A(x)^5) * (1 + x*A(x)^6).
(2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^5/(1+x)^5 ) )^(1/5).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(4*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(5*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(5*n).
(6) A(x) = G(x*A(x)^4) where G(x) = A(x/G(x)^4) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^6).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(5*n+1) / (5*n+1).
(End)

A215661 G.f. satisfies A(x) = (1 + 2*x*A(x)) * (1 + x*A(x)^2).

Original entry on oeis.org

1, 3, 14, 83, 554, 3966, 29756, 230915, 1838162, 14926346, 123157572, 1029590062, 8702171620, 74238432924, 638408311800, 5528154378467, 48161687414498, 421848099386322, 3712675503776372, 32815429463428794, 291169073934720940, 2592569269501484836
Offset: 0

Views

Author

Paul D. Hanna, Aug 19 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.10464695509817751113707000... with A(r) = 2.224485325158190991256253303513498621559794760... where y = A(r) satisfies 9*y^3 - 22*y^2 + 8*y - 8 = 0.
r = 1/((2/27*((76276+3348*sqrt(93))^(2/3) + 1684 + 46*(76276 + 3348*sqrt(93))^(1/3))/(76276 + 3348*sqrt(93))^(1/3))). - Vaclav Kotesovec, Sep 16 2013

Examples

			G.f.: A(x) = 1 + 3*x + 14*x^2 + 83*x^3 + 554*x^4 + 3966*x^5 + 29756*x^6 + ...
Related expansions.
A(x)^2 = 1 + 6*x + 37*x^2 + 250*x^3 + 1802*x^4 + 13580*x^5 + 105709*x^6 + ...
A(x)^3 = 1 + 9*x + 69*x^2 + 528*x^3 + 4122*x^4 + 32847*x^5 + ...
where A(x) = 1 + x*(2*A(x) + A(x)^2) + 2*x^2*A(x)^3.
The g.f. also satisfies the series:
A(x) = 1 + 3*x*A(x) + 5*x^2*A(x)^2 + 11*x^3*A(x)^3 + 21*x^4*A(x)^4 + 43*x^5*A(x)^5 + 85*x^6*A(x)^6 + ... + Jacobsthal(n+2)*x^n*A(x)^n + ...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + 2/A(x))*x*A(x) + (1 + 2^2*2/A(x) + 2^2/A(x)^2)*x^2*A(x)^2/2 +
(1 + 3^2*2/A(x) + 3^2*2^2/A(x)^2 + 2^3/A(x)^3)*x^3*A(x)^3/3 +
(1 + 4^2*2/A(x) + 6^2*2^2/A(x)^2 + 4^2*2^3/A(x)^3 + 2^4/A(x)^4)*x^4*A(x)^4/4 +
(1 + 5^2*2/A(x) + 10^2*2^2/A(x)^2 + 10^2*2^3/A(x)^3 + 5^2*2^4/A(x)^4 + 2^5/A(x)^5)*x^5*A(x)^5/5 + ...
Explicitly,
log(A(x)) = 3*x + 19*x^2/2 + 150*x^3/3 + 1251*x^4/4 + 10738*x^5/5 + 93934*x^6/6 + 832716*x^7/7 + 7454755*x^8/8 + ... + L(n)*x^n/n + ...
where L(n) = [x^n] (1+2*x)^n/(1-x-2*x^2)^n.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x * InverseSeries[Series[x*(1-x-2*x^2)/(1+2*x),{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 16 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + 2*x*A)*(1 + x*(A+x*O(x^n))^2)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff( (1/x)*serreverse( x*(1-x-2*x^2)/(1+2*x +x*O(x^n))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*2^j/A^j)*x^m*A^m/m))); polcoeff(A, n)}
    for(n=0,31,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * 2^k/A(x)^k ).
(2) A(x) = (1/x) * Series_Reversion( x*(1-x-2*x^2)/(1+2*x) ).
(3) A(x) = Sum_{n>=0} A001045(n+2) * x^n * A(x)^n, where A001045 is the Jacobsthal numbers.
The formal inverse of the g.f. A(x) is (sqrt(4-4*x+9*x^2) - (2+x))/(4*x^2).
a(n) = [x^n] ( (1+2*x)/(1-x-2*x^2) )^(n+1) / (n+1).
Recurrence: 9*n*(n+1)*(31*n-55)*a(n) = 2*n*(1426*n^2 - 3243*n + 1211)*a(n-1) - 8*(248*n^3 - 936*n^2 + 991*n - 240)*a(n-2) + 32*(n-2)*(2*n-5)*(31*n-24)*a(n-3). - Vaclav Kotesovec, Sep 16 2013
a(n) ~ 1/558*sqrt(186)*sqrt((556299836 + 9879948*sqrt(93))^(1/3) * ((556299836 + 9879948*sqrt(93))^(2/3) + 669724 + 806*(556299836 + 9879948*sqrt(93))^(1/3)))/((556299836 + 9879948*sqrt(93))^(1/3)) * (2/27*((76276+3348*sqrt(93))^(2/3) + 1684 + 46*(76276+3348*sqrt(93))^(1/3))/ (76276+3348*sqrt(93))^(1/3))^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 16 2013
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024

A215715 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^4).

Original entry on oeis.org

1, 2, 13, 118, 1242, 14227, 172177, 2165732, 28032668, 370944717, 4995412647, 68239105203, 943278064473, 13169938895473, 185453340189492, 2630813161415976, 37561512615867450, 539336703889993006, 7783290731579783544, 112828761898680983141, 1642222504807143423470
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2012

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = (1 + x^r*F(x)^(p+1)) * (1 + x^(r+s)*F(x)^(p+q+1)), then
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ).
The radius of convergence of g.f. A(x) is r = 0.06368546004073732405169450... with A(r) = 1.3960637117611795281240000742797488619448782873... where y=A(r) satisfies 6*y^5 + 17*y^4 - 46*y^3 + 16*y^2 + 4*y - 8 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 118*x^3 + 1242*x^4 + 14227*x^5 + ...
Related expansions.
A(x)^2 = 1 + 4*x + 30*x^2 + 288*x^3 + 3125*x^4 + 36490*x^5 + ...
A(x)^4 = 1 + 8*x + 76*x^2 + 816*x^3 + 9454*x^4 + 115260*x^5 + ...
A(x)^6 = 1 + 12*x + 138*x^2 + 1648*x^3 + 20427*x^4 + 260934*x^5 + ...
where A(x) = 1 + x*(A(x)^2 + A(x)^4) + x^2*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x*A(x) + (1 + 2^2*A(x)^2 + A(x)^4)*x^2*A(x)^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3*A(x)^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4*A(x)^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5*A(x)^5/5 + ...
Explicitly,
log(A(x)) = 2*x + 22*x^2/2 + 284*x^3/3 + 3878*x^4/4 + 54607*x^5/5 + 784144*x^6/6 + 11414265*x^7/7 + 167819014*x^8/8 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1+Sqrt[1-4*x*(1+x)^2])^2/(4*(1+x)^2),{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^4)); polcoeff(A, n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff( sqrt((1/x)*serreverse( x*(1 + sqrt(1 - 4*x*(1+x)^2 +x*O(x^n)))^2/(4*(1+x)^2))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^(2*j))*x^m*A^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(2*j))*x^m*A^(3*m)/m))); polcoeff(A, n)}

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1 + sqrt(1 - 4*x*(1+x)^2))^2/(4*(1+x)^2) ) ).
(2) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(2*k) ).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^(2*k) ).
The formal inverse of the g.f. A(x) is (sqrt(x^4 + 4*x^3 - 2*x^2 + 1) - (1+x^2))/(2*x^4).
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 15.70217125479403872... is the root of the equation -1024 - 3840*d + 26368*d^2 - 58644*d^3 + 1933*d^4 + 108*d^5 = 0 and c = 0.320114409... - Vaclav Kotesovec, Sep 17 2013
a(n) = Sum_{k=0..n} binomial(2*n+2*k+1,k) * binomial(2*n+2*k+1,n-k) / (2*n+2*k+1). - Seiichi Manyama, Jul 18 2023

A216314 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + 2*x*A(x)^2).

Original entry on oeis.org

1, 3, 17, 121, 965, 8247, 73841, 683713, 6493145, 62898859, 619079889, 6173490857, 62239144525, 633323532783, 6496052173665, 67093423506049, 697181754821297, 7283521984427283, 76455801614169809, 806004056649062937, 8529783421905380629, 90584730265930813607
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.08774268876242660659654020... with A(r) = 2.04748732367111203761312028274219344812311691... where y=A(r) satisfies 6*y^3 - 14*y^2 + 4*y - 1 = 0.
r = 1/(((40465 + 387*sqrt(129))^(2/3) + 1174 + 34*(40465 + 387*sqrt(129))^(1/3)) / (40465+387*sqrt(129))^(1/3)/9). - Vaclav Kotesovec, Sep 17 2013

Examples

			G.f.: A(x) = 1 + 3*x + 17*x^2 + 121*x^3 + 965*x^4 + 8247*x^5 + 73841*x^6 +...
Related expansions.
A(x)^2 = 1 + 6*x + 43*x^2 + 344*x^3 + 2945*x^4 + 26398*x^5 + 244615*x^6 +...
A(x)^3 = 1 + 9*x + 78*x^2 + 696*x^3 + 6399*x^4 + 60321*x^5 + 580316*x^6 +...
where A(x) = 1 + A(x)*(1+2*A(x))*x + 2*A(x)^3*x^2.
The g.f. also satisfies the series:
A(x) = 1 + 3*x*A(x) + 8*x^2*A(x)^2 + 22*x^3*A(x)^3 + 60*x^4*A(x)^4 + 164*x^5*A(x)^5 + 448*x^6*A(x)^6 +...+ A028859(n)*x^n*A(x)^n +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1*2 + 1/A(x))*x*A(x) + (1*2^2 + 2^2*2/A(x) + 1/A(x)^2)*x^2*A(x)^2/2 +
(1*2^3 + 3^2*2^2/A(x) + 3^2*2/A(x)^2 + 1/A(x)^3)*x^3*A(x)^3/3 +
(1*2^4 + 4^2*2^3/A(x) + 6^2*2^2/A(x)^2 + 4^2*2/A(x)^3 + 1/A(x)^4)*x^4*A(x)^4/4 +
(1*2^5 + 5^2*2^4/A(x) + 10^2*2^3/A(x)^2 + 10^2*2^2/A(x)^3 + 5^2*2/A(x)^4 + 1/A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 3*x + 25*x^2/2 + 237*x^3/3 + 2361*x^4/4 + 24203*x^5/5 + 252757*x^6/6 + 2674185*x^7/7 + 28567105*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^n/(1-2*x-2*x^2)^n.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x * InverseSeries[Series[x*(1 - 2*x - 2*x^2)/(1+x),{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + 2*x*(A+x*O(x^n))^2)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff( (1/x)*serreverse( x*(1-2*x-2*x^2)/(1+x +x*O(x^n))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*2^(m-j)/A^j)*x^m*A^m/m))); polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k)/A(x)^k ).
(2) A(x) = (1/x) * Series_Reversion( x*(1 - 2*x - 2*x^2)/(1+x) ).
(3) A(x) = Sum_{n>=0} A028859(n) * x^n * A(x)^n, where g.f. of A028859 = (1+x)/(1-2*x-2*x^2).
The formal inverse of the g.f. A(x) is (sqrt(1-4*x+12*x^2) - (1+2*x))/(4*x^2).
a(n) = [x^n] ( (1+x)/(1-2*x-2*x^2) )^(n+1) / (n+1).
Recurrence: 3*n*(n+1)*(43*n-76)*a(n) = n*(1462*n^2 - 3315*n + 1274)*a(n-1) + (86*n^3 - 324*n^2 + 523*n - 330)*a(n-2) + (n-2)*(2*n-5)*(43*n-33)*a(n-3)
a(n) ~ 1/516*sqrt(86)*sqrt((1448486261 + 1803807*sqrt(129))^(1/3)*((1448486261 + 1803807*sqrt(129))^(2/3) + 1280110 + 1118*(1448486261 + 1803807*sqrt(129))^(1/3)))/(1448486261 + 1803807*sqrt(129))^(1/3) * (((40465 + 387*sqrt(129))^(2/3) + 1174 + 34*(40465 + 387*sqrt(129) )^(1/3)) / (40465+387*sqrt(129))^(1/3)/9)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
a(n) = Sum_{k=0..n} 2^k * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024

A239107 Number of hybrid 4-ary trees with n internal nodes.

Original entry on oeis.org

1, 2, 15, 155, 1854, 24124, 331575, 4736345, 69616637, 1046054129, 15995716263, 248111418112, 3894303176880, 61737213540306, 987116931080661, 15899835212249761, 257758369219909534, 4202381519278498915, 68859442092723799788, 1133401910867109123200
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2014

Keywords

Crossrefs

Programs

  • Mathematica
    (1/x InverseSeries[x(1 - x - x^2)^3/(1 + x)^3 + O[x]^21])^(1/3) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^3)*(1 + x*A^4)); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^3/(1+x +x*O(x^n))^3))^(1/3), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
    
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(3*m)/m))); polcoeff(A, n) \\ Paul D. Hanna, Mar 30 2014
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(3*n+1)/(3*n+1), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

Formula

From Paul D. Hanna, Mar 30 2014: (Start)
G.f. A(x) satisfies:
(1) A(x) = (1 + x*A(x)^3) * (1 + x*A(x)^4).
(2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^3/(1+x)^3 ) )^(1/3).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(3*n).
(6) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^4).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(3*n+1) / (3*n+1).
(End)
a(n) = 1/(3*n+1) * Sum_{i=0..n} C(3*n+i,i)*C(3*n+i+1,n-i). - Alois P. Heinz, Jul 10 2014

A364331 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).

Original entry on oeis.org

1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
Offset: 0

Views

Author

Seiichi Manyama, Jul 18 2023

Keywords

Crossrefs

Programs

  • Maple
    A364331 := proc(n)
        add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ;
    end proc:
    seq(A364331(n),n=0..70); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k) / (2*n+3*k+1).
x/series_reversion(x*A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + ..., the g.f. of A215623. - Peter Bala, Sep 08 2024
Showing 1-10 of 12 results. Next