A245049
Number A(n,k) of hybrid k-ary trees with n internal nodes; square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 7, 5, 1, 2, 11, 31, 8, 1, 2, 15, 81, 154, 13, 1, 2, 19, 155, 684, 820, 21, 1, 2, 23, 253, 1854, 6257, 4575, 34, 1, 2, 27, 375, 3920, 24124, 60325, 26398, 55, 1, 2, 31, 521, 7138, 66221, 331575, 603641, 156233, 89, 1, 2, 35, 691, 11764, 148348, 1183077, 4736345, 6210059, 943174, 144
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
3, 7, 11, 15, 19, 23, 27, ...
5, 31, 81, 155, 253, 375, 521, ...
8, 154, 684, 1854, 3920, 7138, 11764, ...
13, 820, 6257, 24124, 66221, 148348, 290305, ...
21, 4575, 60325, 331575, 1183077, 3262975, 7585749, ...
-
A:= (n, k)-> add(binomial((k-1)*n+i, i)*
binomial((k-1)*n+i+1, n-i), i=0..n)/((k-1)*n+1):
seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
-
A[n_, k_] := Sum[Binomial[(k-1)*n+i, i]*Binomial[(k-1)*n+i+1, n-i], {i, 0, n}]/((k-1)*n+1); Table[A[n, 1+d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)
A364337
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^4).
Original entry on oeis.org
1, 2, 9, 68, 580, 5406, 53270, 545844, 5757332, 62094217, 681653493, 7591431752, 85558696024, 974024788280, 11184192097016, 129378232148016, 1506363564912368, 17639001584452320, 207593804132718948, 2454236122156830254, 29132714097692056954, 347086786035103983446
Offset: 0
-
terms = 22; A[] = 0; Do[A[x] = (1+x)(1+x*A[x]^4) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 24 2025 *)
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(4*k+1, n-k)/(4*k+1));
A239108
Number of hybrid 5-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 19, 253, 3920, 66221, 1183077, 21981764, 420449439, 8223704755, 163727846678, 3307039145618, 67600147666909, 1395822347989531, 29070233296701815, 609950649080323320, 12881240945694949696, 273590092192962485985, 5840400740191969187922
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233.
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
-
(1/x InverseSeries[x(1 - x - x^2)^4/(1 + x)^4 + O[x]^20])^(1/4) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^4)*(1 + x*A^5)); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^4/(1+x +x*O(x^n))^4))^(1/4), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(3*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(4*n+1)/(4*n+1), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
A239109
Number of hybrid 6-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 23, 375, 7138, 148348, 3262975, 74673216, 1759690865, 42412172598, 1040644972314, 25907046248766, 652763779424538, 16614703783094140, 426563932954831827, 11033640140115676862, 287265076610919864178, 7522060666571155198520, 197969862318742854908470
Offset: 0
-
(1/x InverseSeries[x*(1 - x - x^2)^5/(1 + x)^5 + O[x]^20])^(1/5) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^5)*(1 + x*A^6)); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^5/(1+x +x*O(x^n))^5))^(1/5), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(5*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(5*n+1)/(5*n+1), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
A379023
Expansion of (1/x) * Series_Reversion( x * ((1 - x - x^2)/(1 + x))^3 ).
Original entry on oeis.org
1, 6, 57, 653, 8277, 111780, 1576671, 22955298, 342377304, 5204438258, 80334470136, 1255798641861, 19840021268937, 316286673287724, 5081503084814883, 82193597974971157, 1337397202150986387, 21875767255039745856, 359499909751084059372, 5932767953991599086905
Offset: 0
-
a(n) = 3*sum(k=0, n, binomial(3*n+k+3, k)*binomial(3*n+k+3, n-k)/(3*n+k+3));
Showing 1-5 of 5 results.