A245049
Number A(n,k) of hybrid k-ary trees with n internal nodes; square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 7, 5, 1, 2, 11, 31, 8, 1, 2, 15, 81, 154, 13, 1, 2, 19, 155, 684, 820, 21, 1, 2, 23, 253, 1854, 6257, 4575, 34, 1, 2, 27, 375, 3920, 24124, 60325, 26398, 55, 1, 2, 31, 521, 7138, 66221, 331575, 603641, 156233, 89, 1, 2, 35, 691, 11764, 148348, 1183077, 4736345, 6210059, 943174, 144
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
3, 7, 11, 15, 19, 23, 27, ...
5, 31, 81, 155, 253, 375, 521, ...
8, 154, 684, 1854, 3920, 7138, 11764, ...
13, 820, 6257, 24124, 66221, 148348, 290305, ...
21, 4575, 60325, 331575, 1183077, 3262975, 7585749, ...
-
A:= (n, k)-> add(binomial((k-1)*n+i, i)*
binomial((k-1)*n+i+1, n-i), i=0..n)/((k-1)*n+1):
seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
-
A[n_, k_] := Sum[Binomial[(k-1)*n+i, i]*Binomial[(k-1)*n+i+1, n-i], {i, 0, n}]/((k-1)*n+1); Table[A[n, 1+d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)
A364338
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 11, 105, 1140, 13555, 170637, 2235472, 30161255, 416248640, 5848462880, 83378361111, 1203100853951, 17537182300140, 257858115407535, 3819894878557990, 56958234329850060, 854192593184162160, 12875579347191388830, 194963091634569681550, 2964229359714424159370, 45234864131654311730160
Offset: 0
-
terms = 22; A[] = 0; Do[A[x] = (1+x)(1+x*A[x]^5) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 24 2025 *)
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(5*k+1, n-k)/(5*k+1));
A239109
Number of hybrid 6-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 23, 375, 7138, 148348, 3262975, 74673216, 1759690865, 42412172598, 1040644972314, 25907046248766, 652763779424538, 16614703783094140, 426563932954831827, 11033640140115676862, 287265076610919864178, 7522060666571155198520, 197969862318742854908470
Offset: 0
-
(1/x InverseSeries[x*(1 - x - x^2)^5/(1 + x)^5 + O[x]^20])^(1/5) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^5)*(1 + x*A^6)); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^5/(1+x +x*O(x^n))^5))^(1/5), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(5*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(5*n+1)/(5*n+1), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
A239107
Number of hybrid 4-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 15, 155, 1854, 24124, 331575, 4736345, 69616637, 1046054129, 15995716263, 248111418112, 3894303176880, 61737213540306, 987116931080661, 15899835212249761, 257758369219909534, 4202381519278498915, 68859442092723799788, 1133401910867109123200
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233.
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
-
(1/x InverseSeries[x(1 - x - x^2)^3/(1 + x)^3 + O[x]^21])^(1/3) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^3)*(1 + x*A^4)); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^3/(1+x +x*O(x^n))^3))^(1/3), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(3*m)/m))); polcoeff(A, n) \\ Paul D. Hanna, Mar 30 2014
for(n=0, 20, print1(a(n), ", "))
-
a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(3*n+1)/(3*n+1), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
A364331
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
Offset: 0
-
A364331 := proc(n)
add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ;
end proc:
seq(A364331(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));
A364335
G.f. satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 17, 204, 2852, 43489, 701438, 11767095, 203223146, 3589167533, 64524575635, 1176860764416, 21723084076739, 405038036077647, 7617437252889030, 144328483391622298, 2752414654270742784, 52790626691557217602, 1017655117382823639414, 19706520281177438174530
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+2*k+1, k)*binomial(3*n+2*k+1, n-k)/(3*n+2*k+1));
A379024
Expansion of (1/x) * Series_Reversion( x * ((1 - x - x^2)/(1 + x))^4 ).
Original entry on oeis.org
1, 8, 100, 1500, 24846, 438064, 8062518, 153117320, 2978260865, 59031215508, 1187987779084, 24210092837648, 498606095949315, 10361291534825800, 216982960825089730, 4574651332139656108, 97018731642209493810, 2068350691029593934000, 44301394943232879298360
Offset: 0
-
a(n) = 4*sum(k=0, n, binomial(4*n+k+4, k)*binomial(4*n+k+4, n-k)/(4*n+k+4));
Showing 1-7 of 7 results.