A007863
Number of hybrid binary trees with n internal nodes.
Original entry on oeis.org
1, 2, 7, 31, 154, 820, 4575, 26398, 156233, 943174, 5785416, 35955297, 225914342, 1432705496, 9158708775, 58954911423, 381806076426, 2485972170888, 16263884777805, 106858957537838, 704810376478024, 4664987368511948, 30974829705533240, 206266525653071416
Offset: 0
Jean Pallo (pallo(AT)u-bourgogne.fr)
G.f. = 1 + 2*x + 7*x^2 + 31*x^3 + 154*x^4 + 820*x^5 + 4575*x^6 + ...
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- F. Chapoton, S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv preprint arXiv:1310.4521 [math.CO], 2013-2014.
- R. Ehrenborg and M. A. Readdy, Sheffer posets and r-signed permutations, Preprint submitted to Ann. Sci. Math. Quebec, 1994. (Annotated scanned copy)
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235.
- J. M. Pallo, On the listing and random generation of hybrid binary trees, International Journal of Computer Mathematics, 50, 1994, 135-145.
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
- Index entries for sequences related to rooted trees
-
taylor_solve_choose_order:true; taylor_solve( A^3*X^2+A^2*X+A*(X-1)+1,A,X,0,[ 20 ]);
-
A:= proc(n) option remember; if n=0 then 1 else convert(series((x^2 *A(n-1)^3 +x*A(n-1)^2 +1)/ (1-x), x=0,n+1), polynom) fi end: a:= n-> coeff(A(n), x, n): seq(a(n), n=0..30); # Alois P. Heinz, Aug 22 2008
-
InverseSeries[Series[(y-y^2-y^3)/(1+y), {y, 0, 24}], x] (* then A(x)=y(x)/x . - Len Smiley, Apr 14 2000 *)
Table[ HypergeometricPFQ[{-n, 1 + n, 2 + n}, {1, 3/2}, -(1/4)], {n,0,23}] (* Olivier Gérard, Apr 23 2009 *)
a[ n_] := If[ n < 0, 0, HypergeometricPFQ[{-n, 1 + n, 2 + n}, {1, 3/2}, -1/4]]; (* Michael Somos, Dec 31 2014 *)
-
{a(n) = if( n<0, 0, sum(k=0, n, binomial(n+k, n) * binomial(n+k+1, n-k)) / (n+1))};
-
{a(n) = local(A = 1 + x + x * O(x^n)); for(i=1, n, A = 1 + x * (A + A^2) + x^2 * A^3); polcoeff(A, n)};
-
{a(n) = local(A=1+x); for(i=1, n, A = exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * (A + x * O(x^n))^j) * x^m / m))); polcoeff(A, n, x)};
A215654
G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^3).
Original entry on oeis.org
1, 2, 11, 81, 684, 6257, 60325, 603641, 6210059, 65272503, 697898849, 7566847547, 82999675563, 919376968734, 10269588489433, 115548651723889, 1308374198000780, 14897993185500455, 170482798370871370, 1959574731164246402, 22614008012647634411, 261915716386286916342
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 81*x^3 + 684*x^4 + 6257*x^5 + 60325*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 26*x^2 + 206*x^3 + 1813*x^4 + 17032*x^5 +...
A(x)^3 = 1 + 6*x + 45*x^2 + 383*x^3 + 3519*x^4 + 34023*x^5 +...
A(x)^5 = 1 + 10*x + 95*x^2 + 925*x^3 + 9270*x^4 + 95237*x^5 +...
where A(x) = 1 + x*(A(x)^2 + A(x)^3) + x^2*A(x)^5.
The g.f. also satisfies the series:
A(x) = 1 + 2*x*A(x)^2 + 3*x^2*A(x)^4 + 5*x^3*A(x)^6 + 8*x^4*A(x)^8 + 13*x^5*A(x)^10 + 21*x^6*A(x)^12 + 34*x^7*A(x)^14 +...+ Fibonacci(n+2)*x^n*A(x)^(2*n) +...
and consequently, A( x*(1-x-x^2)^2/(1+x)^2 ) = (1+x)/(1-x-x^2).
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x))*x*A(x) + (1 + 2^2*A(x) + A(x)^2)*x^2*A(x)^2/2 +
(1 + 3^2*A(x) + 3^2*A(x)^2 + A(x)^3)*x^3*A(x)^3/3 +
(1 + 4^2*A(x) + 6^2*A(x)^2 + 4^2*A(x)^3 + A(x)^4)*x^4*A(x)^4/4 +
(1 + 5^2*A(x) + 10^2*A(x)^2 + 10^2*A(x)^3 + 5^2*A(x)^4 + A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 185*x^3/3 + 2006*x^4/4 + 22412*x^5/5 + 255249*x^6/6 + 2946155*x^7/7 + 34342270*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^(2*n)/(1-x-x^2)^(2*n) / 2.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233. - _N. J. A. Sloane_, Mar 26 2014
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
-
a:= n-> coeff(series(RootOf((1+x*A^2)*(1+x*A^3)-A, A), x, n+1), x, n):
seq(a(n), n=0..33); # Alois P. Heinz, Apr 04 2019
-
CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-x-x^2)^2/(1+x)^2,{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
a(n):=sum(binomial(2*n+i,i)*binomial(2*n+i+1,n-i),i,0,n)/(2*n+1); /* Vladimir Kruchinin, Apr 04 2019 */
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^3)); polcoeff(A, n)}
-
{a(n)=polcoeff(sqrt((1/x)*serreverse( x*(1-x-x^2)^2/(1+x +x*O(x^n))^2)), n)}
for(n=0,31,print1(a(n),", "))
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^m/m))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)}
-
{a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(2*n+1)/(2*n+1),n)}
A239108
Number of hybrid 5-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 19, 253, 3920, 66221, 1183077, 21981764, 420449439, 8223704755, 163727846678, 3307039145618, 67600147666909, 1395822347989531, 29070233296701815, 609950649080323320, 12881240945694949696, 273590092192962485985, 5840400740191969187922
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233.
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
-
(1/x InverseSeries[x(1 - x - x^2)^4/(1 + x)^4 + O[x]^20])^(1/4) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^4)*(1 + x*A^5)); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^4/(1+x +x*O(x^n))^4))^(1/4), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(3*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(4*n+1)/(4*n+1), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
A239109
Number of hybrid 6-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 23, 375, 7138, 148348, 3262975, 74673216, 1759690865, 42412172598, 1040644972314, 25907046248766, 652763779424538, 16614703783094140, 426563932954831827, 11033640140115676862, 287265076610919864178, 7522060666571155198520, 197969862318742854908470
Offset: 0
-
(1/x InverseSeries[x*(1 - x - x^2)^5/(1 + x)^5 + O[x]^20])^(1/5) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^5)*(1 + x*A^6)); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^5/(1+x +x*O(x^n))^5))^(1/5), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(5*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(5*n+1)/(5*n+1), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
A239107
Number of hybrid 4-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 15, 155, 1854, 24124, 331575, 4736345, 69616637, 1046054129, 15995716263, 248111418112, 3894303176880, 61737213540306, 987116931080661, 15899835212249761, 257758369219909534, 4202381519278498915, 68859442092723799788, 1133401910867109123200
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233.
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
-
(1/x InverseSeries[x(1 - x - x^2)^3/(1 + x)^3 + O[x]^21])^(1/3) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^3)*(1 + x*A^4)); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^3/(1+x +x*O(x^n))^3))^(1/3), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
-
a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(3*m)/m))); polcoeff(A, n) \\ Paul D. Hanna, Mar 30 2014
for(n=0, 20, print1(a(n), ", "))
-
a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(3*n+1)/(3*n+1), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
A245050
Number of hybrid 7-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 27, 521, 11764, 290305, 7585749, 206294771, 5778015219, 165541098701, 4828687088591, 142916854642246, 4281359716909135, 129567073833995237, 3955263087052174005, 121649279851846182073, 3766009580469162813492, 117260083892211493754415
Offset: 0
-
a:= n-> add(binomial(6*n+i, i)*binomial(6*n+i+1, n-i), i=0..n)/(6*n+1):
seq(a(n), n=0..20);
A245051
Number of hybrid 8-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 31, 691, 18054, 515892, 15615159, 492007235, 15968172965, 530169356965, 17922457144129, 614796956579459, 21346411113410148, 748762981653051898, 26493592534823331169, 944491728494004127029, 33892155096781949014406, 1223212951343094980654244
Offset: 0
-
a:= n-> add(binomial(7*n+i, i)*binomial(7*n+i+1, n-i), i=0..n)/(7*n+1):
seq(a(n), n=0..20);
A245052
Number of hybrid 9-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 35, 885, 26264, 852909, 29347189, 1051325430, 38798085127, 1464834251301, 56313293080748, 2196846557946047, 86747889084025665, 3460614563468144968, 139261626165295942419, 5646457490910228197571, 230445856010164690649448, 9459481451214159977362615
Offset: 0
-
a:= n-> add(binomial(8*n+i, i)*binomial(8*n+i+1, n-i), i=0..n)/(8*n+1):
seq(a(n), n=0..20);
A245053
Number of hybrid 10-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 39, 1103, 36650, 1333156, 51392991, 2062946770, 85311756697, 3609589528430, 155513170273468, 6799151325525095, 300899538364069838, 13453346159391591392, 606776046327452415295, 27573839101542183831805, 1261298294289947726165466, 58029238642196850552991302
Offset: 0
-
a:= n-> add(binomial(9*n+i, i)*binomial(9*n+i+1, n-i), i=0..n)/(9*n+1):
seq(a(n), n=0..20);
A245054
Number of hybrid (n+1)-ary trees with n internal nodes.
Original entry on oeis.org
1, 2, 11, 155, 3920, 148348, 7585749, 492007235, 38798085127, 3609589528430, 387451906370509, 47166300422957938, 6423902286587614629, 968148639856266236900, 159999832729471473179245, 28775750341340155354161817, 5595702924360902427922341048
Offset: 0
-
a:= n-> add(binomial(n^2+i, i)*binomial(n^2+i+1, n-i), i=0..n)/(n^2+1):
seq(a(n), n=0..20);
-
Table[Sum[Binomial[n^2+i,i]*Binomial[n^2+i+1, n-i], {i,0,n}]/(n^2+1),{n,0,20}] (* Vaclav Kotesovec, Jul 11 2014 *)
Showing 1-10 of 10 results.
Comments