cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A011365 Reciprocal of g.f. for A007863.

Original entry on oeis.org

1, -2, -3, -11, -49, -244, -1301, -7265, -41945, -248357, -1499838, -9202478, -57204263, -359491066, -2280171089, -14578108497, -93850280001, -607856133804, -3958143058643, -25897182540675, -170164359751174, -1122422557526850, -7429480035700452
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A007863.

Programs

  • PARI
    a(n) = if (n==0, 1, if (n==1, -2, -sum(i=0, n, binomial(n+i-2,n-2)*binomial(n+i-1,n-i))/(n-1))); \\ Michel Marcus, Dec 29 2018

Formula

a(n) = -(Sum_{i=0..n} binomial(n+i-2,n-2)*binomial(n+i-1,n-i))/(n-1), n>1; a(0) = 1, a(1) = -2. - Vladimir Kruchinin, Feb 15 2013

A198953 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.095007017562450871521918431664620... with A(r) = 1.6228790124092133906198298670423120590101223122... where y=A(r) satisfies 2*y^5 + 6*y^4 - 18*y^3 + 6*y^2 - 3 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • Maxima
    a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(2*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A073157 (Schroeder n-paths containing no FFs).
The formal inverse of g.f. A(x) is (sqrt((1-x^2)^2 + 4*x^3) - (1+x^2)) / (2*x^3).
D-finite with recurrence: 2*n*(n+1)*(2*n+1)*(1275*n^5 - 11696*n^4 + 36827*n^3 - 40618*n^2 - 5828*n + 25368)*a(n) = 6*n*(2*n - 1)*(7650*n^6 - 66351*n^5 + 183953*n^4 - 102147*n^3 - 314787*n^2 + 450754*n - 137760)*a(n-1) - 6*(n-1)*(2*n - 3)*(34425*n^6 - 281367*n^5 + 690471*n^4 - 86579*n^3 - 1831014*n^2 + 2230808*n - 685440)*a(n-2) + 6*(22950*n^8 - 279378*n^7 + 1275447*n^6 - 2461807*n^5 + 518525*n^4 + 5756973*n^3 - 9486182*n^2 + 5962912*n - 1303680)*a(n-3) - 6*(22950*n^8 - 313803*n^7 + 1633059*n^6 - 3736233*n^5 + 1886879*n^4 + 7909228*n^3 - 16107824*n^2 + 11531408*n - 2756544)*a(n-4) + 3*(n-4)*(3*n - 14)*(3*n - 7)*(1275*n^5 - 5321*n^4 + 2793*n^3 + 12437*n^2 - 16992*n + 5328)*a(n-5). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 10.5255382776611313... is the root of the equation -27 + 108*d - 108*d^2 + 324*d^3 - 72*d^4 + 4*d^5 = 0 and c = 0.5321376859604656812266678970406658537671... - Vaclav Kotesovec, Sep 19 2013
a(n) = Sum_{j=0..n}((Sum_{k=0..j}((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1)))*(-1)^(n-j)*binomial(2*n-j,n-j)). - Vladimir Kruchinin, Mar 13 2016
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(n+2*k+1,n-k) / (n+2*k+1). - Seiichi Manyama, Jul 19 2023

A198951 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^3).

Original entry on oeis.org

1, 1, 1, 2, 6, 16, 39, 99, 271, 763, 2146, 6062, 17359, 50337, 147057, 431874, 1275273, 3786649, 11298031, 33846202, 101762937, 306997821, 929038518, 2819426688, 8578433304, 26163061776, 79970186791, 244938841096, 751646959402, 2310683396056, 7115199919151
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

a(n) is also the number of rooted labeled trees on n nodes such that each node has 0, 1, 3, or 4 children. - Patrick Devlin, Mar 04 2012

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 39*x^6 + 99*x^7 + ...
Related expansions:
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 36*x^4 + 105*x^5 + 292*x^6 + ...
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 67*x^4 + 200*x^5 + 582*x^6 + ...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^2)*x + (1 + 2^2*x^2*A(x)^2 + x^4*A(x)^4)*x^2/2 +
(1 + 3^2*x^2*A(x)^2 + 3^2*x^4*A(x)^4 + x^6*A(x)^6)*x^3/3 +
(1 + 4^2*x^2*A(x)^2 + 6^2*x^4*A(x)^4 + 4^2*x^6*A(x)^6 + x^8*A(x)^8)*x^4/4 +
(1 + 5^2*x^2*A(x)^2 + 10^2*x^4*A(x)^4 + 10^2*x^6*A(x)^6 + 5^2*x^8*A(x)^8 + x^10*A(x)^10)*x^5/5 + ...
more explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 17*x^4/4 + 51*x^5/5 + 136*x^6/6 + 393*x^7/7 + 1233*x^8/8 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(A=(1+x*A)*(1+x^3*A^3), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2012
  • Mathematica
    InverseSeries[ Series[ x/((1 + x)*(1 + x^3)), {x, 0, 31}], x] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Sep 10 2013 *)
  • PARI
    {a(n)=local(A=1/x*serreverse(x/(1+x+x^3+x^4+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1+x+x^3+x^4+x*O(x^n))^(n+1)/(n+1), n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n,sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x^2*A^2)^(2*m+1)*sum(j=0, n\2, binomial(m+j, j)^2*x^(2*j)*(A^2+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}

Formula

G.f. satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * A(x)^(2*k) ).
(2) A(x) = (1/x)*Series_Reversion(x/((1+x)*(1+x^3))).
(3) a(n) = [x^n] (1 + x + x^3 + x^4)^(n+1) / (n+1).
(4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x^2*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^(2*k) * A(x)^(2*k) ).
D-finite with recurrence: 3*(n+1)*(3*n+2)*(3*n+4)*(119*n^3 - 210*n^2 + 73*n - 6)*a(n) = 2*(6664*n^6 - 1764*n^5 - 11585*n^4 + 426*n^3 + 4129*n^2 - 102*n - 288)*a(n-1) - 18*(n-1)*(1190*n^5 - 910*n^4 - 1937*n^3 + 895*n^2 + 606*n - 216)*a(n-2) + 162*(n-2)*(n-1)*(2*n-3)*(119*n^3 + 147*n^2 + 10*n - 24)*a(n-3). - Vaclav Kotesovec, Sep 09 2013
a(n) ~ c*d^n/n^(3/2), where d = 1/81*((2144134+520506*sqrt(17))^(2/3)+112*(2144134+520506*sqrt(17))^(1/3)-2036)/(2144134+520506*sqrt(17))^(1/3) = 3.23407602060970245... is the root of the equation -324 + 180*d - 112*d^2 + 27*d^3 = 0 and c = 0.6286981954423757284622435... - Vaclav Kotesovec, Sep 09 2013
A(1/d) = 370/243 + (3*sqrt(17)/509 - 3070/123687)*(2144134+520506*sqrt(17))^(1/3) + (141*sqrt(17)/2072648 - 129529/503653464)*(2144134+520506*sqrt(17))^(2/3) = 2.053716618436594614948796... - Vaclav Kotesovec, Sep 10 2013
From Peter Bala, Jun 21 2015: (Start)
a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1,k)* binomial(n + 1,n - 3*k). Applying Maple's sumrecursion command to this formula gives the above recurrence of Kotesovec.
More generally, the coefficient of x^n in A(x)^r equals r/(n + r)*Sum_{k = 0..floor(n/3)} binomial(n + r,k)*binomial(n + r,n - 3*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} A228960(n)*x^n/n), where A228960(n) = Sum_{k = 0..floor(n/3)} binomial(n,k)*binomial(n,3*k). Cf. A036765, A186241 and A200731. (End)

A192415 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^2).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 23, 51, 120, 286, 681, 1636, 3985, 9803, 24257, 60338, 150931, 379501, 958360, 2429294, 6179380, 15769380, 40361087, 103579221, 266471500, 687098810, 1775440421, 4596689688, 11922774513, 30977768907, 80615085087, 210103228155, 548352756656, 1433053608502
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 23*x^6 + 51*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 36*x^5 + 82*x^6 + 190*x^7 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 33*x^4 + 84*x^5 + 205*x^6 + 498*x^7 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^2 + x^4*A(x)^3.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x))*x + (1 + 2^2*x^2*A(x) + x^4*A(x)^2)*x^2/2 +
(1 + 3^2*x^2*A(x) + 3^2*x^4*A(x)^2 + x^6*A(x)^3)*x^3/3 +
(1 + 4^2*x^2*A(x) + 6^2*x^4*A(x)^2 + 4^2*x^6*A(x)^3 + x^8*A(x)^4)*x^4/4 +
(1 + 5^2*x^2*A(x) + 10^2*x^4*A(x)^2 + 10^2*x^6*A(x)^3 + 5^2*x^8*A(x)^4 + x^10*A(x)^5)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 13*x^4/4 + 31*x^5/5 + 70*x^6/6 + 176*x^7/7 + 469*x^8/8 + 1228*x^9/9 + 3161*x^10/10 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x^3*AGF^2) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^2)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    x='x; y='y; Fxy = (1+x*y) * (1 + x^3*y^2) - y;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy,y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(34)  \\ Gheorghe Coserea, Nov 30 2016

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * A(x)^k ).
D-finite with recurrence: 4*(n+1)*(n+2)*(217*n^3 - 1239*n^2 + 1838*n - 336)*a(n) = 6*(n+1)*(434*n^4 - 2261*n^3 + 2339*n^2 + 1792*n - 1344)*a(n-1) - (n-1)*(2821*n^4 - 13286*n^3 + 7829*n^2 + 18464*n - 4032)*a(n-2) + 6*(868*n^5 - 6258*n^4 + 13981*n^3 - 7438*n^2 - 7769*n + 6136)*a(n-3) + 2*(n-3)*(2*n - 5)*(434*n^3 - 1393*n^2 + 211*n + 1048)*a(n-4) + 2*(n-4)*(2*n - 7)*(217*n^3 - 588*n^2 + 11*n + 480)*a(n-5). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 2.730683387097269698... is the root of the equation -4 - 8*d - 24*d^2 + 13*d^3 - 12*d^4 + 4*d^5 = 0 and c = 2.078548317061344694159945441842754... is the root of the equation -1 - 67*c^2 - 19811*c^4 + 36463*c^6 - 41664*c^8 + 7936*c^10 = 0. - Vaclav Kotesovec, Sep 19 2013, updated Nov 28 2016
a(n) = Sum_{k=0..n/2+1} C(n-k+2,k-1)*C(n-k+2,2*k-1)/(n-k+2). - Vladimir Kruchinin, Feb 12 2019

A198957 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^2*A(x)^4).

Original entry on oeis.org

1, 1, 2, 7, 26, 102, 424, 1827, 8078, 36466, 167376, 778718, 3664164, 17407068, 83375616, 402198915, 1952296598, 9528757098, 46735576816, 230227356906, 1138609205372, 5651170500612, 28138939936704, 140527262919342, 703704207921932, 3532664478314484, 17775185122527776
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 102*x^5 + 424*x^6 + 1827*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1028*x^5 + 4570*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 375*x^4 + 1681*x^5 + 7660*x^6 +...
where A(x) = 1 + x*A(x) + x^2*A(x)^4 + x^3*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^3)*x + (1 + 2^2*x*A(x)^3 + x^2*A(x)^6)*x^2/2 +
(1 + 3^2*x*A(x)^3 + 3^2*x^2*A(x)^6 + x^3*A(x)^9)*x^3/3 +
(1 + 4^2*x*A(x)^3 + 6^2*x^2*A(x)^6 + 4^2*x^3*A(x)^9 + x^4*A(x)^12)*x^4/4 +
(1 + 5^2*x*A(x)^3 + 10^2*x^2*A(x)^6 + 10^2*x^3*A(x)^9 + 5^2*x^4*A(x)^12 + x^5*A(x)^15)*x^5/5 +...
more explicitly,
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 75*x^4/4 + 356*x^5/5 + 1746*x^6/6 + 8660*x^7/7 + 43299*x^8/8 +...
Also, g.f. A(x) = G(x*A(x)) where G(x) = A(x/G(x)) (g.f. of A104545) begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[2*x^3*(1+x)/(1 - Sqrt[1-4*x^2*(1+x)^2]), {x, 0, 20}], x],x] (* Vaclav Kotesovec, May 28 2014 *)
  • Maxima
    a(n):=sum(binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1),j,0,(n)/2); /* Vladimir Kruchinin, May 28 2014 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*(A+x*O(x^n))^4)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x +x^3*O(x^n))^2))), n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A^3)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    x='x; y='y; Fxy = (1 + x*y)*(1 + x^2*y^4) - y;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(27) \\ Gheorghe Coserea, Nov 30 2016

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps).
(4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x*A(x)^3)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^k * A(x)^(3*k) ).
a(n) = sum(j=0..n/2, binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1)). - Vladimir Kruchinin, May 28 2014
a(n) ~ sqrt((1 + 2*r*s^3 + 3*r^2*s^4)/(2*Pi*s*(3 + 5*r*s))) / (2*n^(3/2)*r^(n+1/2)), where r = 0.187614989725738719..., s = 1.61178302212918247... are roots of the system of equations r + 4*r^2*s^3 + 5*r^3*s^4 = 1, (1+r*s)*(1+r^2*s^4) = s. - Vaclav Kotesovec, May 28 2014

A215654 G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 11, 81, 684, 6257, 60325, 603641, 6210059, 65272503, 697898849, 7566847547, 82999675563, 919376968734, 10269588489433, 115548651723889, 1308374198000780, 14897993185500455, 170482798370871370, 1959574731164246402, 22614008012647634411, 261915716386286916342
Offset: 0

Views

Author

Paul D. Hanna, Aug 19 2012

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = (1 + x^r*F(x)^(p+1)) * (1 + x^(r+s)*F(x)^(p+q+1)), then
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ).
The radius of convergence of g.f. A(x) is r = 0.08035832347291483065438962031... with A(r) = 1.5393913914574609282262181402132760790902539070... where y=A(r) satisfies 20*y^3 - 38*y^2 + 15*y - 6 = 0.
r = 1/(187/300*17^(2/3) + 119/75*17^(1/3) + 1273/300). - Vaclav Kotesovec, Sep 17 2013
Number of hybrid ternary trees with n internal nodes. [Hong and Park]. - N. J. A. Sloane, Mar 26 2014

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 81*x^3 + 684*x^4 + 6257*x^5 + 60325*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 26*x^2 + 206*x^3 + 1813*x^4 + 17032*x^5 +...
A(x)^3 = 1 + 6*x + 45*x^2 + 383*x^3 + 3519*x^4 + 34023*x^5 +...
A(x)^5 = 1 + 10*x + 95*x^2 + 925*x^3 + 9270*x^4 + 95237*x^5 +...
where A(x) = 1 + x*(A(x)^2 + A(x)^3) + x^2*A(x)^5.
The g.f. also satisfies the series:
A(x) = 1 + 2*x*A(x)^2 + 3*x^2*A(x)^4 + 5*x^3*A(x)^6 + 8*x^4*A(x)^8 + 13*x^5*A(x)^10 + 21*x^6*A(x)^12 + 34*x^7*A(x)^14 +...+ Fibonacci(n+2)*x^n*A(x)^(2*n) +...
and consequently, A( x*(1-x-x^2)^2/(1+x)^2 ) = (1+x)/(1-x-x^2).
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x))*x*A(x) + (1 + 2^2*A(x) + A(x)^2)*x^2*A(x)^2/2 +
(1 + 3^2*A(x) + 3^2*A(x)^2 + A(x)^3)*x^3*A(x)^3/3 +
(1 + 4^2*A(x) + 6^2*A(x)^2 + 4^2*A(x)^3 + A(x)^4)*x^4*A(x)^4/4 +
(1 + 5^2*A(x) + 10^2*A(x)^2 + 10^2*A(x)^3 + 5^2*A(x)^4 + A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 185*x^3/3 + 2006*x^4/4 + 22412*x^5/5 + 255249*x^6/6 + 2946155*x^7/7 + 34342270*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^(2*n)/(1-x-x^2)^(2*n) / 2.
		

Crossrefs

Column k=3 of A245049.

Programs

  • Maple
    a:= n-> coeff(series(RootOf((1+x*A^2)*(1+x*A^3)-A, A), x, n+1), x, n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Apr 04 2019
  • Mathematica
    CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-x-x^2)^2/(1+x)^2,{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • Maxima
    a(n):=sum(binomial(2*n+i,i)*binomial(2*n+i+1,n-i),i,0,n)/(2*n+1); /* Vladimir Kruchinin, Apr 04 2019 */
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^3)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff(sqrt((1/x)*serreverse( x*(1-x-x^2)^2/(1+x +x*O(x^n))^2)), n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(2*n+1)/(2*n+1),n)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-x-x^2)^2/(1+x)^2 ) ).
(2) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(4) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(2*n).
(5) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^3).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(2*n+1) / (2*n+1).
Recurrence: 100*(n-1)*n*(2*n-1)*(2*n+1)*(4913*n^3 - 26877*n^2 + 49912*n - 30480)*a(n) = 2*(n-1)*(2*n-1)*(6254249*n^5 - 40468670*n^4 + 99110119*n^3 - 109861414*n^2 + 52822608*n - 8566560)*a(n-1) - 3*(2343501*n^7 - 22194333*n^6 + 87905623*n^5 - 187987155*n^4 + 233161624*n^3 - 166253172*n^2 + 62010112*n - 8952000)*a(n-2) + 6*(n-2)*(2*n-5)*(3*n-8)*(3*n-4)*(4913*n^3 - 12138*n^2 + 10897*n - 2532)*a(n-3). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ 1/1020*sqrt(73695 + 11730*17^(2/3) + 28815*17^(1/3)) * (187/300*17^(2/3) + 119/75*17^(1/3) + 1273/300)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
a(n) = 1/(2*n+1)*Sum_{i=0..n} C(2*n+i,i)*C(2*n+i+1,n-i). - Vladimir Kruchinin, Apr 04 2019

A007788 Number of augmented Andre 3-signed permutations: E.g.f. (1-sin(3*x))^(-1/3).

Original entry on oeis.org

1, 1, 4, 19, 136, 1201, 13024, 165619, 2425216, 40132801, 740882944, 15091932019, 336257744896, 8134269015601, 212309523595264, 5946914908771219, 177934946000306176, 5663754614516217601, 191097349696090537984, 6812679868133940475219, 255885704427935576621056
Offset: 0

Views

Author

R. Ehrenborg (ehrenbor(AT)lacim.uqam.ca) and M. A. Readdy (readdy(AT)lacim.uqam.ca)

Keywords

Comments

It appears that all members are of the form 3k+1. - Ralf Stephan, Nov 12 2007

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( (1-Sin(3*x))^(-1/3) ))); // G. C. Greubel, Mar 05 2020
    
  • Maple
    m:=20; S:=series( (1-sin(3*x))^(-1/3), x, m+1): seq(j!*coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 05 2020
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-Sin[3x])^(-1/3),{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    Vec(serlaplace( (1-sin(3*x))^(-1/3) +O('x^20) )) \\ G. C. Greubel, Mar 05 2020
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*(3*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025
    
  • Sage
    m=20;
    def A007788_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1-sin(3*x))^(-1/3) ).list()
    a=A007788_list(m+1); [factorial(n)*a[n] for n in (0..m)] # G. C. Greubel, Mar 05 2020

Formula

E.g.f.: (1-sin(3*x))^(-1/3).
a(n) ~ n! * 2*6^n/(Pi^(n+2/3)*n^(1/3)*Gamma(2/3)). - Vaclav Kotesovec, Jun 25 2013
a(n) = Sum_{k=0..n} A007559(k) * (3*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A245049 Number A(n,k) of hybrid k-ary trees with n internal nodes; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 7, 5, 1, 2, 11, 31, 8, 1, 2, 15, 81, 154, 13, 1, 2, 19, 155, 684, 820, 21, 1, 2, 23, 253, 1854, 6257, 4575, 34, 1, 2, 27, 375, 3920, 24124, 60325, 26398, 55, 1, 2, 31, 521, 7138, 66221, 331575, 603641, 156233, 89, 1, 2, 35, 691, 11764, 148348, 1183077, 4736345, 6210059, 943174, 144
Offset: 0

Views

Author

Alois P. Heinz, Jul 10 2014

Keywords

Examples

			Square array A(n,k) begins:
   1,    1,     1,      1,       1,       1,       1, ...
   2,    2,     2,      2,       2,       2,       2, ...
   3,    7,    11,     15,      19,      23,      27, ...
   5,   31,    81,    155,     253,     375,     521, ...
   8,  154,   684,   1854,    3920,    7138,   11764, ...
  13,  820,  6257,  24124,   66221,  148348,  290305, ...
  21, 4575, 60325, 331575, 1183077, 3262975, 7585749, ...
		

Crossrefs

Rows n=0-2 give: A000012, A007395, A004767(k-1).
Main diagonal gives A245054.

Programs

  • Maple
    A:= (n, k)-> add(binomial((k-1)*n+i, i)*
        binomial((k-1)*n+i+1, n-i), i=0..n)/((k-1)*n+1):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := Sum[Binomial[(k-1)*n+i, i]*Binomial[(k-1)*n+i+1, n-i], {i, 0, n}]/((k-1)*n+1); Table[A[n, 1+d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)

Formula

A(n,k) = 1/((k-1)*n+1) * Sum_{i=0..n} C((k-1)*n+i,i)*C((k-1)*n+i+1,n-i).
A(n,k) = [x^n] ((1+x)/(1-x-x^2))^((k-1)*n+1) / ((k-1)*n+1).
G.f. for column k satisfies: A_k(x) = (1+x*A_k(x)^(k-1)) * (1+x*A_k(x)^k).

A011270 Hybrid binary rooted trees with n nodes whose root is labeled by "n".

Original entry on oeis.org

1, 1, 4, 18, 90, 481, 2690, 15547, 92124, 556664, 3417062, 21248966, 133576724, 847465593, 5419399722, 34895368578, 226050057378, 1472170887755, 9633297762870, 63305402213336, 417612181048826, 2764492667188504, 18358282050480384, 122265756020847943
Offset: 0

Views

Author

pallo(AT)u-bourgogne.fr (Jean Pallo)

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 18*x^3 + 90*x^4 + 481*x^5 + 2690*x^6 + 15547*x^7 + 92124*x^8 + 556664*x^9 + 3417062*x^10 + ...
where x = x*A(x) - x^2*A(x)^2/(1 - x*A(x))^2.
		

Crossrefs

Cf. A011272.

Programs

  • Maple
    G:= proc(n) option remember; if n<=0 then 1 else convert(series(
          (x^2*G(n-1)^3 +x*G(n-1)^2 +1)/ (1-x), x=0, n+1), polynom) fi
        end:
    a:= n-> coeff(1+x*G(n-1)^2, x, n):
    seq(a(n), n=0..20); # Alois P. Heinz, Aug 22 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1], (
          6*n*(210*n^2-411*n+163)*a(n-1)-4*(n-2)*(7*n-6)*(5*n-3)*a(n-2)
          +2*(n-3)*(2*n-3)*(35*n-16)*a(n-3))/(5*n*(n+1)*(35*n-51)))
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, May 18 2013
  • Mathematica
    a[0] = 1; a[n_] := n*HypergeometricPFQ[{1-n, n+1, n+2}, {3/2, 2}, -1/4]; Table[ a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *)

Formula

G.f.: = 1+x*G(x)^2, where G(x) is g.f. for A007863.
Reversion of x - (x/(1 - x))^2 = 0, 1, -1, -2, -3, -4, -5, ... - Olivier Gérard, Jul 05 2001
a(n) = (2/(n+2))*Sum_{j=0...n} binomial(n+j+1, n+1)*binomial(n+j+2, n-j). - Vladimir Kruchinin, Dec 24 2010
G.f. A(x) satisfies: A(x) = 1/(1 - Sum_{k>=1} k*x^k*A(x)^k). - Ilya Gutkovskiy, Apr 10 2018
G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=1} n^(n-1) * x^n*A(x)^(n+1) / (1 + (n-1)*x*A(x))^(n+1). - Paul D. Hanna, Oct 08 2023
a(n) ~ sqrt((35 + (869750 - 5250*sqrt(105))^(1/3) + 5*(14*(497 + 3*sqrt(105)))^(1/3))/525) / (sqrt(Pi) * n^(3/2) * ((2 - 104/(-181 + 105*sqrt(105))^(1/3) + (-181 + 105*sqrt(105))^(1/3))/6)^n). - Vaclav Kotesovec, Oct 08 2023

A364374 G.f. satisfies A(x) = (1 + x*A(x)) * (1 - x*A(x)^2).

Original entry on oeis.org

1, 0, -1, 1, 2, -6, -1, 28, -31, -98, 288, 131, -1730, 1638, 7431, -19583, -15502, 135642, -99523, -664050, 1535896, 1816196, -11902728, 5944326, 64487669, -129346490, -213116764, 1112382523, -277762230, -6572175490, 11287106695, 25078981772, -107983368519, -1826241850
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2023

Keywords

Crossrefs

Programs

  • Maple
    A364374 := proc(n)
        add( (-1)^k*binomial(n+k+1,k) * binomial(n+k+1,n-k)/(n+k+1),k=0..n) ;
    end proc:
    seq(A364374(n),n=0..80); # R. J. Mathar, Jul 25 2023
  • Mathematica
    nmax = 33;
    A[_] = 1;
    Do[A[x_] = (1+x*A[x])*(1-x*A[x]^2) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 21 2023 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n+k+1, k)*binomial(n+k+1, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^k * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1).
D-finite with recurrence 15*n*(n+1)*a(n) +2*n*(13*n-11)*a(n-1) +12*(9*n^2-19*n+9)*a(n-2) +2*(10*n^2-65*n+99)*a(n-3) -4*(n-3)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jul 25 2023
A(x) = (1/x) * series_reversion(x*(1 + x + x^2)/(1 + x)). - Peter Bala, Sep 08 2024
Showing 1-10 of 37 results. Next