cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A036765 Number of ordered rooted trees with n non-root nodes and all outdegrees <= three.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 104, 309, 939, 2905, 9118, 28964, 92940, 300808, 980864, 3219205, 10626023, 35252867, 117485454, 393133485, 1320357501, 4449298136, 15038769672, 50973266380, 173214422068, 589998043276, 2014026871496, 6889055189032, 23608722350440
Offset: 0

Views

Author

Keywords

Comments

Number of Dyck n-paths that avoid UUUU. For example, a(4)=13 counts all 14 Dyck 4-paths except UUUUDDDD. - David Callan, Dec 09 2004
Number of restricted growth strings for Dyck paths with at most 2 consecutive rises (this is equivalent to the comment above, see example). - Joerg Arndt, Oct 31 2012
Let A(x) be the g.f. for the sequence of numbers of Dyck words with at most k consecutive ones (paths with at most k consecutive up-steps 'U', Restricted Growth Strings with at most k-1 consecutive rises), then B(x) := x*A(x) is the series reversion of x/(1+x+x^2+...+x^k). - Joerg Arndt, Oct 31 2012
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 3 children. - Geoffrey Critzer, Jan 05 2013
a(n) = number of noncrossing partitions of [n] in which all blocks are of size <= 3. - David Callan, Aug 27 2014

Examples

			a(4) = 13 since the top row of M^4 = (13, 8, 4, 1, 1).
From _Joerg Arndt_, Oct 31 2012: (Start)
a(5)=36 because there are 36 Dyck words of length 5 that avoid "1111":
[ #]      RGS                rises         Dyck word
[ 1]    [ . . . . . ]     [ . . . . . ]    1.1.1.1.1.
[ 2]    [ . . . . 1 ]     [ . . . . 1 ]    1.1.1.11..
[ 3]    [ . . . 1 . ]     [ . . . 1 . ]    1.1.11..1.
[ 4]    [ . . . 1 1 ]     [ . . . 1 . ]    1.1.11.1..
[ 5]    [ . . . 1 2 ]     [ . . . 1 2 ]    1.1.111...
[ 6]    [ . . 1 . . ]     [ . . 1 . . ]    1.11..1.1.
[ 7]    [ . . 1 . 1 ]     [ . . 1 . 1 ]    1.11..11..
[ 8]    [ . . 1 1 . ]     [ . . 1 . . ]    1.11.1..1.
[ 9]    [ . . 1 1 1 ]     [ . . 1 . . ]    1.11.1.1..
[10]    [ . . 1 1 2 ]     [ . . 1 . 1 ]    1.11.11...
[11]    [ . . 1 2 . ]     [ . . 1 2 . ]    1.111...1.
[12]    [ . . 1 2 1 ]     [ . . 1 2 . ]    1.111..1..
[13]    [ . . 1 2 2 ]     [ . . 1 2 . ]    1.111.1...
[--]    [ . . 1 2 3 ]     [ . . 1 2 3 ]    1.1111....
[14]    [ . 1 . . . ]     [ . 1 . . . ]    11..1.1.1.
[15]    [ . 1 . . 1 ]     [ . 1 . . 1 ]    11..1.11..
[16]    [ . 1 . 1 . ]     [ . 1 . 1 . ]    11..11..1.
[17]    [ . 1 . 1 1 ]     [ . 1 . 1 . ]    11..11.1..
[18]    [ . 1 . 1 2 ]     [ . 1 . 1 2 ]    11..111...
[19]    [ . 1 1 . . ]     [ . 1 . . . ]    11.1..1.1.
[20]    [ . 1 1 . 1 ]     [ . 1 . . 1 ]    11.1..11..
[21]    [ . 1 1 1 . ]     [ . 1 . . . ]    11.1.1..1.
[22]    [ . 1 1 1 1 ]     [ . 1 . . . ]    11.1.1.1..
[23]    [ . 1 1 1 2 ]     [ . 1 . . 1 ]    11.1.11...
[24]    [ . 1 1 2 . ]     [ . 1 . 1 . ]    11.11...1.
[25]    [ . 1 1 2 1 ]     [ . 1 . 1 . ]    11.11..1..
[26]    [ . 1 1 2 2 ]     [ . 1 . 1 . ]    11.11.1...
[27]    [ . 1 1 2 3 ]     [ . 1 . 1 2 ]    11.111....
[28]    [ . 1 2 . . ]     [ . 1 2 . . ]    111...1.1.
[29]    [ . 1 2 . 1 ]     [ . 1 2 . 1 ]    111...11..
[30]    [ . 1 2 1 . ]     [ . 1 2 . . ]    111..1..1.
[31]    [ . 1 2 1 1 ]     [ . 1 2 . . ]    111..1.1..
[32]    [ . 1 2 1 2 ]     [ . 1 2 . 1 ]    111..11...
[33]    [ . 1 2 2 . ]     [ . 1 2 . . ]    111.1...1.
[34]    [ . 1 2 2 1 ]     [ . 1 2 . . ]    111.1..1..
[35]    [ . 1 2 2 2 ]     [ . 1 2 . . ]    111.1.1...
[36]    [ . 1 2 2 3 ]     [ . 1 2 . 1 ]    111.11....
[--]    [ . 1 2 3 . ]     [ . 1 2 3 . ]    1111....1.
[--]    [ . 1 2 3 1 ]     [ . 1 2 3 . ]    1111...1..
[--]    [ . 1 2 3 2 ]     [ . 1 2 3 . ]    1111..1...
[--]    [ . 1 2 3 3 ]     [ . 1 2 3 . ]    1111.1....
[--]    [ . 1 2 3 4 ]     [ . 1 2 3 4 ]    11111.....
(Dots are used for zeros for readability.)
(End)
		

Crossrefs

Right hand column of triangle A064580. The sequence of sequences A000007 (0^n), A000012 (constant 1), A001006 (Motzkin), A036765, A036766, ... tends to A000108 (Catalan).
Column k=3 of A288942.

Programs

  • Magma
    [&+[Binomial(n+1, n-2*k)*Binomial(n+1, k)/(n+1): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Oct 16 2018
  • Maple
    r := 3; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ];
    # second Maple program:
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1), j=1..min(1, u))+
          add(b(u+j-1, o-j), j=1..min(3, o)))
        end:
    a:= n-> b(0, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 28 2017
  • Mathematica
    InverseSeries[Series[y/(1+y+y^2+y^3), {y, 0, 24}], x] (* then A(x)=y(x)/x *) (* Len Smiley, Apr 11 2000 *)
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 3];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *)
    Table[HypergeometricPFQ[{-n-1, (1-n)/2, -n/2}, {1, 3/2}, -1], {n, 0, 28}] (* Vladimir Reshetnikov, Oct 15 2018 *)
  • PARI
    {a(n)=sum(j=0,n\2,binomial(n+1, n-2*j)*binomial(n+1,j))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A+(x*A)^2+(x*A)^3);polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x*A+x*O(x^n))^j)*x^m/m)));polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x*A+x*O(x^n))^j)*(1-x*A)^(2*m+1)*x^m/m)));polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))*exp(sum(m=1,n,A^m*sum(k=0,m-1,binomial(m-1,k)*binomial(m,k)*x^k)/(1-x)^(2*m)*x^(2*m)/m) +x*O(x^n)));polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))*exp(sum(m=1,n,A^m*sum(k=0,n,binomial(m+k-1,k)*binomial(m+k,k)*x^k)*x^(2*m)/m) +x*O(x^n)));polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    Vec(serreverse(x/(1+x+x^2+x^3)+O(x^66))/x) /* Joerg Arndt, Jun 10 2011 */
    

Formula

a(n) = (1/(n+1))*Sum_{j=0..floor(n/2)} binomial(n+1, n-2*j)*binomial(n+1, j). G.f. A(z) satisfies A=1+z*A+(z*A)^2+(z*A)^3. - Emeric Deutsch, Nov 29 2003
G.f.: F(x)/x where F(x) is the reversion of x/(1+x+x^2+x^3). - Joerg Arndt, Jun 10 2011
From Paul D. Hanna, Feb 13 2011: (Start)
O.g.f.: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2*x^k*A(x)^k) * x^n/n ).
O.g.f.: A(x) = exp( Sum_{n>=1} (Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^k)*(1-x*A(x))^(2*n+1)* x^n/n ). (End)
From Paul D. Hanna, Feb 24 2011: (Start)
O.g.f.: A(x) = (1/(1-x))*exp( Sum_{n>=1} A(x)^n*(Sum_{k=0..n-1} C(n-1,k)*C(n,k)*x^k)/(1-x)^(2*n) * x^(2*n)/n ).
O.g.f.: A(x) = (1/(1-x))*exp( Sum_{n>=1} A(x)^n*(Sum_{k>=0} C(n+k-1,k)*C(n+k,k)*x^k) * x^(2*n)/n ). (End)
Let M = an infinite quadradiagonal matrix with all 1's in every diagonal: (sub, main, super, and super-super), and the rest zeros. V = vector [1,0,0,0,...]. The sequence = left column terms of M*V iterates. - Gary W. Adamson, Jun 06 2011
An infinite square production matrix M for the sequence is:
1, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, ...
2, 1, 0, 1, 0, 0, ...
3, 2, 1, 0, 1, 0, ...
4, 3, 2, 1, 0, 1, ...
5, 4, 3, 2, 1, 0, ...
..., such that a(n) is the top left term of M^n. - Gary W. Adamson, Feb 21 2012
D-finite with recurrence: 2*(n+1)*(2*n+3)*(13*n-1)*a(n) = (143*n^3 + 132*n^2 - 17*n - 18)*a(n-1) + 4*(n-1)*(26*n^2 + 11*n - 6)*a(n-2) + 16*(n-2)*(n-1)*(13*n + 12)*a(n-3). - Vaclav Kotesovec, Sep 09 2013
a(n) ~ c*d^n/n^(3/2), where d = 1/12*((6371+624*sqrt(78))^(2/3)+11*(6371+624*sqrt(78))^(1/3)+217)/(6371+624*sqrt(78))^(1/3) = 3.610718613276... is the root of the equation -16-8*d-11*d^2+4*d^3=0 and c = sqrt(f/Pi) = 0.9102276936417..., where f = 1/9984*(9295 + (13*(45085576939 - 795629568*sqrt(78)))^(1/3) + (13*(45085576939 + 795629568*sqrt(78)))^(1/3)) is the root of the equation -128+1696*f-9295*f^2+3328*f^3=0. - Vaclav Kotesovec, Sep 10 2013
From Peter Bala, Jun 21 2015: (Start)
The coefficient of x^n in A(x)^r equals r/(n + r)*Sum_{k = 0..floor(n/2)} binomial(n + r,k)*binomial(n + r,n - 2*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} A005725(n)*x^n/n), where A005725(n) = Sum_{k = 0..floor(n/2)} binomial(n,k)*binomial(n,n - 2*k). Cf. A186241, A198951, A200731. (End)
a(n) = hypergeom([-n-1, (1-n)/2, -n/2], [1, 3/2], -1). - Vladimir Reshetnikov, Oct 15 2018

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017

A198953 G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.095007017562450871521918431664620... with A(r) = 1.6228790124092133906198298670423120590101223122... where y=A(r) satisfies 2*y^5 + 6*y^4 - 18*y^3 + 6*y^2 - 3 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • Maxima
    a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(2*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A073157 (Schroeder n-paths containing no FFs).
The formal inverse of g.f. A(x) is (sqrt((1-x^2)^2 + 4*x^3) - (1+x^2)) / (2*x^3).
D-finite with recurrence: 2*n*(n+1)*(2*n+1)*(1275*n^5 - 11696*n^4 + 36827*n^3 - 40618*n^2 - 5828*n + 25368)*a(n) = 6*n*(2*n - 1)*(7650*n^6 - 66351*n^5 + 183953*n^4 - 102147*n^3 - 314787*n^2 + 450754*n - 137760)*a(n-1) - 6*(n-1)*(2*n - 3)*(34425*n^6 - 281367*n^5 + 690471*n^4 - 86579*n^3 - 1831014*n^2 + 2230808*n - 685440)*a(n-2) + 6*(22950*n^8 - 279378*n^7 + 1275447*n^6 - 2461807*n^5 + 518525*n^4 + 5756973*n^3 - 9486182*n^2 + 5962912*n - 1303680)*a(n-3) - 6*(22950*n^8 - 313803*n^7 + 1633059*n^6 - 3736233*n^5 + 1886879*n^4 + 7909228*n^3 - 16107824*n^2 + 11531408*n - 2756544)*a(n-4) + 3*(n-4)*(3*n - 14)*(3*n - 7)*(1275*n^5 - 5321*n^4 + 2793*n^3 + 12437*n^2 - 16992*n + 5328)*a(n-5). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 10.5255382776611313... is the root of the equation -27 + 108*d - 108*d^2 + 324*d^3 - 72*d^4 + 4*d^5 = 0 and c = 0.5321376859604656812266678970406658537671... - Vaclav Kotesovec, Sep 19 2013
a(n) = Sum_{j=0..n}((Sum_{k=0..j}((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1)))*(-1)^(n-j)*binomial(2*n-j,n-j)). - Vladimir Kruchinin, Mar 13 2016
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(n+2*k+1,n-k) / (n+2*k+1). - Seiichi Manyama, Jul 19 2023

A198888 G.f. A(x) satisfies A(x) = (1 + x*A(x))*(1 + x^3*A(x)^4).

Original entry on oeis.org

1, 1, 1, 2, 7, 22, 61, 172, 528, 1695, 5447, 17486, 56778, 187064, 622149, 2080325, 6990670, 23621143, 80230388, 273687898, 937072049, 3219316096, 11095261035, 38351414036, 132915860364, 461770505371, 1607875309626, 5610314558562, 19614016834508, 68696001390320, 241007011551493
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 61*x^6 + 172*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 236*x^5 + 766*x^6 +...
A(x)^5 = 1 + 5*x + 15*x^2 + 40*x^3 + 120*x^4 + 401*x^5 + 1340*x^6 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^4 + x^4*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^3)*x + (1 + 2^2*x^2*A(x)^3 + x^4*A(x)^6)*x^2/2 +
(1 + 3^2*x^2*A(x)^3 + 3^2*x^4*A(x)^6 + x^6*A(x)^9)*x^3/3 +
(1 + 4^2*x^2*A(x)^3 + 6^2*x^4*A(x)^6 + 4^2*x^6*A(x)^9 + x^8*A(x)^12)*x^4/4 +
(1 + 5^2*x^2*A(x)^3 + 10^2*x^4*A(x)^6 + 10^2*x^6*A(x)^9 + 5^2*x^8*A(x)^12 + x^10*A(x)^15)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 76*x^5/5 + 232*x^6/6 + 743*x^7/7 + 2629*x^8/8 + 9481*x^9/9 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+k,k]*Binomial[n+k+1,n-3*k]/(n+1),{k,0,Floor[n/3]}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=sum(k=0, n\3, binomial(n+k, k)*binomial(n+k+1, n-3*k))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^4)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x^2*A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x^2*A^3+x*O(x^n))^j)*(1-x^2*A^3)^(2*m+1)*x^m/m))); polcoeff(A, n, x)}

Formula

a(n) = Sum_{k=0..[n/3]} C(n+k, k)*C(n+k+1, n-3*k)/(n+1).
G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x/(1+x) - x^4 ). [Corrected by Seiichi Manyama, Dec 15 2024]
(2) A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 + x)/(1 - x^3 - x^4).
(3) A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*x^(2*k)*A(x)^(3*k)] * x^n/n ).
(4) A(x) = exp( Sum_{n>=1} [Sum_{k>=0} C(n+k,k)^2*x^(2*k)*A(x)^(3*k)]*(1-x^2*A(x)^3)^(2*n+1)* x^n/n ).
Recurrence: 283*(n-2)*(n-1)*n*(n+1)*(23959952*n^4 - 257205740*n^3 + 1013304652*n^2 - 1735060589*n + 1087154052)*a(n) = 4*(n-2)*(n-1)*n*(8529742912*n^5 - 95830114896*n^4 + 406564828744*n^3 - 799079033082*n^2 + 700270562579*n - 198783157747)*a(n-1) - 8*(n-2)*(n-1)*(8625582720*n^6 - 109845231840*n^5 + 557377471920*n^4 - 1435513153260*n^3 + 1966313576808*n^2 - 1346689501571*n + 355664911636)*a(n-2) + 32*(n-2)*(4216951552*n^7 - 64244492224*n^6 + 407865945256*n^5 - 1396107234938*n^4 + 2774470392903*n^3 - 3187035309382*n^2 + 1946241786026*n - 482103205479)*a(n-3) - 16*(n-2)*(1150077696*n^7 - 19246341696*n^6 + 133834520688*n^5 - 499899483140*n^4 + 1078973257808*n^3 - 1338172075263*n^2 + 875535465587*n - 229801752572)*a(n-4) + 8*(n-4)*(2*n - 5)*(4*n - 17)*(4*n - 11)*(23959952*n^4 - 161365932*n^3 + 385447144*n^2 - 384228697*n + 132152327)*a(n-5). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 3.686367878047643633... is the root of the equation -256 + 768*d - 5632*d^2 + 2880*d^3 - 1424*d^4 + 283*d^5 = 0 and c = 0.73361916425726935915879240304621641469885... - Vaclav Kotesovec, Sep 18 2013

A199874 G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^2).

Original entry on oeis.org

1, 1, 3, 10, 37, 147, 611, 2625, 11564, 51953, 237123, 1096420, 5125063, 24178427, 114974387, 550511901, 2651896733, 12843003108, 62494595022, 305400429548, 1498184696271, 7375179807191, 36421312544431, 180383163330765, 895756907248150, 4459095182031675, 22247684478181317
Offset: 0

Views

Author

Paul D. Hanna, Nov 11 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 147*x^5 + 611*x^6 +...
where A( x/(1+x^2) - x^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 26*x^3 + 103*x^4 + 428*x^5 + 1838*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 80*x^3 + 359*x^4 + 1632*x^5 + 7506*x^6 +...
where A(x) = 1 + x*(1+x)*A(x)^2 + x^3*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x)*x*A(x) + (1 + 2^2*x + x^2)*x^2*A(x)^2/2 +
(1 + 3^2*x + 3^2*x^2 + x^3)*x^3*A(x)^3/3 +
(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^4*A(x)^4/4 +
(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)*x^5*A(x)^5/5 +
(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^6*A(x)^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 101*x^4/4 + 481*x^5/5 + 2330*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20;aa=ConstantArray[0,nmax];aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x*AGF^2)*(1+x^2*AGF^2)-AGF,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 18 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x/(1+x^2+x*O(x^n))-x^2),n)}
    
  • PARI
    {a(n)=polcoeff(((1+x^2)/(1-x-x^3+x*O(x^n)))^(n+1)/(n+1), n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j)*x^m*A^m/m))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x/(1+x^2) - x^2 ).
(2) A( x*(1-x-x^3)/(1+x^2) ) = (1+x^2)/(1-x-x^3).
(3) a(n) = [x^n] ((1+x^2)/(1-x-x^3))^(n+1) / (n+1).
(4) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k) * x^n*A(x)^n/n ).
(5) A(x) = exp( Sum_{n>=1} (1-x)^(2*n+1)*(Sum_{k>=0} C(n+k,k)^2*x^k) * x^n*A(x)^n/n ).
Recurrence: 31*(n-1)*n*(n+1)*(85396*n^4 - 902916*n^3 + 3471647*n^2 - 5767203*n + 3503250)*a(n) = 2*(n-1)*n*(6319304*n^5 - 69975436*n^4 + 290875210*n^3 - 559740413*n^2 + 484175751*n - 138985722)*a(n-1) + 2*(n-1)*(2903464*n^6 - 36506072*n^5 + 179801738*n^4 - 439606930*n^3 + 553204983*n^2 - 328951215*n + 67014378)*a(n-2) + 2*(2*n - 5)*(1964108*n^6 - 24695284*n^5 + 123902749*n^4 - 317652203*n^3 + 438313617*n^2 - 307740825*n + 85471038)*a(n-3) - 32*(n-3)*(2*n - 7)*(85396*n^5 - 860218*n^4 + 3249611*n^3 - 5747414*n^2 + 4753791*n - 1471338)*a(n-4) + 8*(n-4)*(n-3)*(2*n - 9)*(85396*n^4 - 561332*n^3 + 1275275*n^2 - 1191073*n + 390174)*a(n-5). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ c*d^n/n^(3/2), where d=5.28245622984... is the root of the equation -16 + 64*d - 92*d^2 - 68*d^3 - 148*d^4 + 31*d^5 = 0 and c = 0.49559010377906722118329... - Vaclav Kotesovec, Aug 18 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-2*k+1,k) * binomial(2*n-2*k+1,n-2*k) / (2*n-2*k+1). - Seiichi Manyama, Jul 18 2023

A192415 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^2).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 23, 51, 120, 286, 681, 1636, 3985, 9803, 24257, 60338, 150931, 379501, 958360, 2429294, 6179380, 15769380, 40361087, 103579221, 266471500, 687098810, 1775440421, 4596689688, 11922774513, 30977768907, 80615085087, 210103228155, 548352756656, 1433053608502
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 23*x^6 + 51*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 36*x^5 + 82*x^6 + 190*x^7 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 33*x^4 + 84*x^5 + 205*x^6 + 498*x^7 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^2 + x^4*A(x)^3.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x))*x + (1 + 2^2*x^2*A(x) + x^4*A(x)^2)*x^2/2 +
(1 + 3^2*x^2*A(x) + 3^2*x^4*A(x)^2 + x^6*A(x)^3)*x^3/3 +
(1 + 4^2*x^2*A(x) + 6^2*x^4*A(x)^2 + 4^2*x^6*A(x)^3 + x^8*A(x)^4)*x^4/4 +
(1 + 5^2*x^2*A(x) + 10^2*x^4*A(x)^2 + 10^2*x^6*A(x)^3 + 5^2*x^8*A(x)^4 + x^10*A(x)^5)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 13*x^4/4 + 31*x^5/5 + 70*x^6/6 + 176*x^7/7 + 469*x^8/8 + 1228*x^9/9 + 3161*x^10/10 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x^3*AGF^2) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^2)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    x='x; y='y; Fxy = (1+x*y) * (1 + x^3*y^2) - y;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy,y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(34)  \\ Gheorghe Coserea, Nov 30 2016

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * A(x)^k ).
D-finite with recurrence: 4*(n+1)*(n+2)*(217*n^3 - 1239*n^2 + 1838*n - 336)*a(n) = 6*(n+1)*(434*n^4 - 2261*n^3 + 2339*n^2 + 1792*n - 1344)*a(n-1) - (n-1)*(2821*n^4 - 13286*n^3 + 7829*n^2 + 18464*n - 4032)*a(n-2) + 6*(868*n^5 - 6258*n^4 + 13981*n^3 - 7438*n^2 - 7769*n + 6136)*a(n-3) + 2*(n-3)*(2*n - 5)*(434*n^3 - 1393*n^2 + 211*n + 1048)*a(n-4) + 2*(n-4)*(2*n - 7)*(217*n^3 - 588*n^2 + 11*n + 480)*a(n-5). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 2.730683387097269698... is the root of the equation -4 - 8*d - 24*d^2 + 13*d^3 - 12*d^4 + 4*d^5 = 0 and c = 2.078548317061344694159945441842754... is the root of the equation -1 - 67*c^2 - 19811*c^4 + 36463*c^6 - 41664*c^8 + 7936*c^10 = 0. - Vaclav Kotesovec, Sep 19 2013, updated Nov 28 2016
a(n) = Sum_{k=0..n/2+1} C(n-k+2,k-1)*C(n-k+2,2*k-1)/(n-k+2). - Vladimir Kruchinin, Feb 12 2019

A198957 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^2*A(x)^4).

Original entry on oeis.org

1, 1, 2, 7, 26, 102, 424, 1827, 8078, 36466, 167376, 778718, 3664164, 17407068, 83375616, 402198915, 1952296598, 9528757098, 46735576816, 230227356906, 1138609205372, 5651170500612, 28138939936704, 140527262919342, 703704207921932, 3532664478314484, 17775185122527776
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 102*x^5 + 424*x^6 + 1827*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1028*x^5 + 4570*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 375*x^4 + 1681*x^5 + 7660*x^6 +...
where A(x) = 1 + x*A(x) + x^2*A(x)^4 + x^3*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^3)*x + (1 + 2^2*x*A(x)^3 + x^2*A(x)^6)*x^2/2 +
(1 + 3^2*x*A(x)^3 + 3^2*x^2*A(x)^6 + x^3*A(x)^9)*x^3/3 +
(1 + 4^2*x*A(x)^3 + 6^2*x^2*A(x)^6 + 4^2*x^3*A(x)^9 + x^4*A(x)^12)*x^4/4 +
(1 + 5^2*x*A(x)^3 + 10^2*x^2*A(x)^6 + 10^2*x^3*A(x)^9 + 5^2*x^4*A(x)^12 + x^5*A(x)^15)*x^5/5 +...
more explicitly,
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 75*x^4/4 + 356*x^5/5 + 1746*x^6/6 + 8660*x^7/7 + 43299*x^8/8 +...
Also, g.f. A(x) = G(x*A(x)) where G(x) = A(x/G(x)) (g.f. of A104545) begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[2*x^3*(1+x)/(1 - Sqrt[1-4*x^2*(1+x)^2]), {x, 0, 20}], x],x] (* Vaclav Kotesovec, May 28 2014 *)
  • Maxima
    a(n):=sum(binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1),j,0,(n)/2); /* Vladimir Kruchinin, May 28 2014 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*(A+x*O(x^n))^4)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x +x^3*O(x^n))^2))), n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A^3)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    x='x; y='y; Fxy = (1 + x*y)*(1 + x^2*y^4) - y;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(27) \\ Gheorghe Coserea, Nov 30 2016

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps).
(4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x*A(x)^3)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^k * A(x)^(3*k) ).
a(n) = sum(j=0..n/2, binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1)). - Vladimir Kruchinin, May 28 2014
a(n) ~ sqrt((1 + 2*r*s^3 + 3*r^2*s^4)/(2*Pi*s*(3 + 5*r*s))) / (2*n^(3/2)*r^(n+1/2)), where r = 0.187614989725738719..., s = 1.61178302212918247... are roots of the system of equations r + 4*r^2*s^3 + 5*r^3*s^4 = 1, (1+r*s)*(1+r^2*s^4) = s. - Vaclav Kotesovec, May 28 2014

A200718 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x^2*A(x)^6).

Original entry on oeis.org

1, 1, 3, 14, 75, 433, 2636, 16668, 108399, 720431, 4871555, 33409042, 231817448, 1624503716, 11480658056, 81731416480, 585579734959, 4219179476875, 30552067317233, 222225174139730, 1622894404239115, 11894991079960721, 87472260252499560, 645183802300787356, 4771926560361458884
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 75*x^4 + 433*x^5 + 2636*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 34*x^3 + 187*x^4 + 1100*x^5 + 6784*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 194*x^3 + 1200*x^4 + 7674*x^5 + 50317*x^6 +...
A(x)^8 = 1 + 8*x + 52*x^2 + 336*x^3 + 2210*x^4 + 14776*x^5 + 100216*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^6 + x^3*A(x)^8.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^4)*x*A + (1 + 2^2*x*A^4 + x^2*A^8)*x^2*A^2/2 +
(1 + 3^2*x*A^4 + 3^2*x^2*A^8 + x^3*A^12)*x^3*A^3/3 +
(1 + 4^2*x*A^4 + 6^2*x^2*A^8 + 4^2*x^3*A^12 + x^4*A^16)*x^4*A^4/4 +
(1 + 5^2*x*A^4 + 10^2*x^2*A^8 + 10^2*x^3*A^12 + 5^2*x^4*A^16 + x^5*A^20)*x^5*A^5/5 + ...
The g.f. of A104545, G(x) = A(x/G(x)^2) where A(x) = G(x*A(x)^2), begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Binomial[2*n + 2*k + 1, k]*Binomial[2*n + 2*k + 1, n - 2*k]/ (2*n + 2*k + 1), {k, 0, n/2}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jan 09 2018, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((binomial(2*n+2*k+1,k)*binomial(2*n+2*k+1,n-2*k))/(2*n+2*k+1),k,0,(n)/2); /* Vladimir Kruchinin, Mar 11 2016 */
  • PARI
    {a(n)=polcoeff(sqrt( (1/x)*serreverse( 2*x^5*(1+x)^2/(1 - 2*x^2*(1+x)^2 - sqrt(1 - 4*x^2*(1+x)^2+O(x^(n+6)))) ) ),n)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( 2*x^5*(1+x)^2/(1 - 2*x^2*(1+x)^2 - sqrt(1 - 4*x^2*(1+x)^2)) ) ).
(2) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps).
(3) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(4*k)] ).
(4) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [(1-x/A(x)^4)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k * A(x)^(4*k)] ).
a(n) = Sum_{k=0..floor(n/2)}((binomial(2*n+2*k+1,k)*binomial(2*n+2*k+1,n-2*k))/(2*n+2*k+1)). - Vladimir Kruchinin, Mar 11 2016

A200719 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x^2*A(x)^5).

Original entry on oeis.org

1, 1, 3, 13, 64, 340, 1903, 11053, 65993, 402527, 2497439, 15712220, 100001459, 642719263, 4165537744, 27193644061, 178654643151, 1180282875483, 7836312619243, 52259258911091, 349902441457427, 2351240866736891, 15851508780927739, 107187240225220684, 726784821098903319
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 64*x^4 + 340*x^5 + 1903*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 163*x^4 + 886*x^5 + 5039*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 765*x^4 + 4481*x^5 + 26920*x^6 +...
A(x)^7 = 1 + 7*x + 42*x^2 + 252*x^3 + 1533*x^4 + 9457*x^5 + 59101*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^5 + x^3*A(x)^7.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^3)*x*A + (1 + 2^2*x*A^3 + x^2*A^6)*x^2*A^2/2 +
(1 + 3^2*x*A^3 + 3^2*x^2*A^6 + x^3*A^9)*x^3*A^3/3 +
(1 + 4^2*x*A^3 + 6^2*x^2*A^6 + 4^2*x^3*A^9 + x^4*A^12)*x^4*A^4/4 +
(1 + 5^2*x*A^3 + 10^2*x^2*A^6 + 10^2*x^3*A^9 + 5^2*x^4*A^12 + x^5*A^15)*x^5*A^5/5 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k)] ).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [(1-x/A(x)^3)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k * A(x)^(3*k)] ).
Recurrence: 4232*(n-2)*(n-1)*n*(2*n - 3)*(2*n - 1)*(2*n + 1)*(108983978975*n^7 - 1828734495225*n^6 + 13017379495661*n^5 - 50928975062019*n^4 + 118201965098732*n^3 - 162617590602876*n^2 + 122676758610192*n - 39103265134080)*a(n) = 8*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(850837923857825*n^9 - 15127768128079400*n^8 + 116088908648008427*n^7 - 502364025369222635*n^6 + 1342887860190877280*n^5 - 2280899268898038065*n^4 + 2433907848768834828*n^3 - 1548429898790214180*n^2 + 521138603722292640*n - 68863424146977600)*a(n-1) - 30*(n-2)*(2*n - 3)*(155302170039375*n^11 - 3227155335853125*n^10 + 29807524885054600*n^9 - 161278340404759950*n^8 + 566950865855228019*n^7 - 1356848300481904461*n^6 + 2250482361655315470*n^5 - 2579665279074165840*n^4 + 1996011605601581864*n^3 - 988803599084885136*n^2 + 280851990522009984*n - 34444332223983360)*a(n-2) + 5*(7288303593953125*n^13 - 187891351713750000*n^12 + 2204843674914291875*n^11 - 15579013461781304250*n^10 + 73867718896175411475*n^9 - 247858726321141236540*n^8 + 604530296941440837821*n^7 - 1082990060568950070282*n^6 + 1421457900098213642392*n^5 - 1345695224728829837040*n^4 + 889319601933492222864*n^3 - 386196670582228097568*n^2 + 97916706472751405568*n - 10797892365692920320)*a(n-3) + 10*(n-3)*(2*n - 7)*(5*n - 18)*(5*n - 14)*(5*n - 12)*(5*n - 11)*(108983978975*n^7 - 1065846642400*n^6 + 4333636082786*n^5 - 9458655747964*n^4 + 11899609166891*n^3 - 8554104592084*n^2 + 3208950812340*n - 473478110640)*a(n-4). - Vaclav Kotesovec, Nov 17 2017
a(n) ~ s * sqrt((r*s*(r*s^3 - 1) - 3) / (7*Pi*(5*r*s*(1 + r*s^3) - 3))) / (2*n^(3/2)*r^n), where r = 0.1385102270697349252376651829944449360743895474888... and s = 1.450646440303399446510765649245639306003224666768... are real roots of the system of equations (1 + r*s^2)*(1 + r^2*s^5) = s, r*s*(2 + 5*r*s^3 + 7*r^2*s^5) = 1. - Vaclav Kotesovec, Nov 22 2017
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(2*n+k+1,n-2*k) / (2*n+k+1). - Seiichi Manyama, Jul 18 2023

A215654 G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 11, 81, 684, 6257, 60325, 603641, 6210059, 65272503, 697898849, 7566847547, 82999675563, 919376968734, 10269588489433, 115548651723889, 1308374198000780, 14897993185500455, 170482798370871370, 1959574731164246402, 22614008012647634411, 261915716386286916342
Offset: 0

Views

Author

Paul D. Hanna, Aug 19 2012

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = (1 + x^r*F(x)^(p+1)) * (1 + x^(r+s)*F(x)^(p+q+1)), then
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ).
The radius of convergence of g.f. A(x) is r = 0.08035832347291483065438962031... with A(r) = 1.5393913914574609282262181402132760790902539070... where y=A(r) satisfies 20*y^3 - 38*y^2 + 15*y - 6 = 0.
r = 1/(187/300*17^(2/3) + 119/75*17^(1/3) + 1273/300). - Vaclav Kotesovec, Sep 17 2013
Number of hybrid ternary trees with n internal nodes. [Hong and Park]. - N. J. A. Sloane, Mar 26 2014

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 81*x^3 + 684*x^4 + 6257*x^5 + 60325*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 26*x^2 + 206*x^3 + 1813*x^4 + 17032*x^5 +...
A(x)^3 = 1 + 6*x + 45*x^2 + 383*x^3 + 3519*x^4 + 34023*x^5 +...
A(x)^5 = 1 + 10*x + 95*x^2 + 925*x^3 + 9270*x^4 + 95237*x^5 +...
where A(x) = 1 + x*(A(x)^2 + A(x)^3) + x^2*A(x)^5.
The g.f. also satisfies the series:
A(x) = 1 + 2*x*A(x)^2 + 3*x^2*A(x)^4 + 5*x^3*A(x)^6 + 8*x^4*A(x)^8 + 13*x^5*A(x)^10 + 21*x^6*A(x)^12 + 34*x^7*A(x)^14 +...+ Fibonacci(n+2)*x^n*A(x)^(2*n) +...
and consequently, A( x*(1-x-x^2)^2/(1+x)^2 ) = (1+x)/(1-x-x^2).
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x))*x*A(x) + (1 + 2^2*A(x) + A(x)^2)*x^2*A(x)^2/2 +
(1 + 3^2*A(x) + 3^2*A(x)^2 + A(x)^3)*x^3*A(x)^3/3 +
(1 + 4^2*A(x) + 6^2*A(x)^2 + 4^2*A(x)^3 + A(x)^4)*x^4*A(x)^4/4 +
(1 + 5^2*A(x) + 10^2*A(x)^2 + 10^2*A(x)^3 + 5^2*A(x)^4 + A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 185*x^3/3 + 2006*x^4/4 + 22412*x^5/5 + 255249*x^6/6 + 2946155*x^7/7 + 34342270*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^(2*n)/(1-x-x^2)^(2*n) / 2.
		

Crossrefs

Column k=3 of A245049.

Programs

  • Maple
    a:= n-> coeff(series(RootOf((1+x*A^2)*(1+x*A^3)-A, A), x, n+1), x, n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Apr 04 2019
  • Mathematica
    CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-x-x^2)^2/(1+x)^2,{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • Maxima
    a(n):=sum(binomial(2*n+i,i)*binomial(2*n+i+1,n-i),i,0,n)/(2*n+1); /* Vladimir Kruchinin, Apr 04 2019 */
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^3)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff(sqrt((1/x)*serreverse( x*(1-x-x^2)^2/(1+x +x*O(x^n))^2)), n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(2*n+1)/(2*n+1),n)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-x-x^2)^2/(1+x)^2 ) ).
(2) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(4) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(2*n).
(5) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^3).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(2*n+1) / (2*n+1).
Recurrence: 100*(n-1)*n*(2*n-1)*(2*n+1)*(4913*n^3 - 26877*n^2 + 49912*n - 30480)*a(n) = 2*(n-1)*(2*n-1)*(6254249*n^5 - 40468670*n^4 + 99110119*n^3 - 109861414*n^2 + 52822608*n - 8566560)*a(n-1) - 3*(2343501*n^7 - 22194333*n^6 + 87905623*n^5 - 187987155*n^4 + 233161624*n^3 - 166253172*n^2 + 62010112*n - 8952000)*a(n-2) + 6*(n-2)*(2*n-5)*(3*n-8)*(3*n-4)*(4913*n^3 - 12138*n^2 + 10897*n - 2532)*a(n-3). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ 1/1020*sqrt(73695 + 11730*17^(2/3) + 28815*17^(1/3)) * (187/300*17^(2/3) + 119/75*17^(1/3) + 1273/300)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
a(n) = 1/(2*n+1)*Sum_{i=0..n} C(2*n+i,i)*C(2*n+i+1,n-i). - Vladimir Kruchinin, Apr 04 2019

A200074 G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)).

Original entry on oeis.org

1, 1, 3, 9, 30, 108, 406, 1577, 6280, 25499, 105169, 439388, 1855636, 7908909, 33975250, 146954693, 639460707, 2797384235, 12295494109, 54272825103, 240480529815, 1069257987503, 4769306203838, 21334400243252, 95687482105807, 430217846136134, 1938651904470374, 8754225470415889
Offset: 0

Views

Author

Paul D. Hanna, Nov 13 2011

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ),
then F(x) = (1 + x^r*F(x)^(p+1))*(1 + x^(r+s)*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 108*x^5 + 406*x^6 + 1577*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 24*x^3 + 87*x^4 + 330*x^5 + 1289*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 46*x^3 + 180*x^4 + 720*x^5 + 2928*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x) + x^3*A(x)^3.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (A + x)*x + (A^2 + 2^2*x*A + x^2)*x^2/2 +
(A^3 + 3^2*x*A^2 + 3^2*x^2*A + x^3)*x^3/3 +
(A^4 + 4^2*x*A^3 + 6^2*x^2*A^2 + 4^2*x^3*A + x^4)*x^4/4 +
(A^5 + 5^2*x*A^4 + 10^2*x^2*A^3 + 10^2*x^3*A^2 + 5^2*x^4*A + x^5)*x^5/5 +
(A^6 + 6^2*x*A^5 + 15^2*x^2*A^4 + 20^2*x^3*A^3 + 15^2*x^4*A^2 + 6^2*x^5*A + x^6)*x^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 77*x^4/4 + 331*x^5/5 + 1445*x^6/6 + 6392*x^7/7 + 28565*x^8/8 +...
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(A=(1+x*A^2)*(1+x^2*A), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2012
  • Mathematica
    m = 28; A[_] = 0;
    Do[A[x_] = (1 + x A[x]^2)(1 + x^2 A[x]) + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1+x*A^2)*(1+x^2*A^1)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j/A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x/A)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j/A^j)*x^m*A^m/m))); polcoeff(A, n, x)}

Formula

G.f. satisfies:
(1) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(n-k)) * x^n/n ).
(2) A(x) = exp( Sum_{n>=1} (1-x/A(x))^(2*n+1)*(Sum_{k>=0} C(n+k,k)^2*x^k/A(x)^k) * x^n*A(x)^n/n ).
(3) A(x) = x / Series_Reversion( x*G(x) ) where G(x) is the g.f. of A199876.
(4) A(x) = G(x/A(x)) where G(x) = A(x*G(x)) is the g.f. of A199876.
Recurrence: (n+1)*(n+2)*(1241*n^4 - 10636*n^3 + 25417*n^2 - 7382*n - 17136)*a(n) = - 18*(n+1)*(443*n^3 - 3889*n^2 + 9734*n - 5712)*a(n-1) + 4*(6205*n^6 - 53180*n^5 + 115741*n^4 + 64762*n^3 - 370103*n^2 + 246727*n - 25704)*a(n-2) + 6*(2482*n^6 - 24995*n^5 + 76519*n^4 - 36347*n^3 - 185471*n^2 + 293092*n - 140400)*a(n-3) + 2*(4964*n^6 - 57436*n^5 + 228617*n^4 - 276802*n^3 - 361447*n^2 + 956696*n - 320496)*a(n-4) - 6*(2482*n^6 - 32441*n^5 + 140587*n^4 - 173153*n^3 - 266705*n^2 + 677518*n - 291840)*a(n-5) + 12*(n-4)*(2*n - 11)*(11*n^2 + 73*n - 748)*a(n-6) + 2*(n-5)*(2*n - 13)*(1241*n^4 - 5672*n^3 + 955*n^2 + 16508*n - 8496)*a(n-7). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ c*d^n/n^(3/2), where d = 4.770539985405... is the root of the equation -4 + 12*d^2 - 8*d^3 - 12*d^4 - 20*d^5 + d^7 = 0 and c = 0.612892860188927397373456... - Vaclav Kotesovec, Aug 18 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k+1,k) * binomial(2*n-3*k+1,n-2*k) / (2*n-3*k+1). - Seiichi Manyama, Jul 18 2023
Showing 1-10 of 27 results. Next