cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A073157 Number of Schroeder n-paths containing no FFs.

Original entry on oeis.org

1, 2, 5, 18, 70, 293, 1283, 5808, 26960, 127628, 613814, 2990681, 14730713, 73229291, 366936231, 1851352820, 9397497758, 47957377934, 245903408244, 1266266092112, 6545667052320, 33954266444498, 176689391245146
Offset: 0

Views

Author

Paul D. Hanna, Jul 29 2002

Keywords

Comments

Number of Schroeder n-paths containing no FFs. A Schroeder n-path (A006318) consists of steps U=(1,1),F=(2,0),D=(1,-1) starting at (0,0), ending at (2n,0), and never going below the x-axis. Example: a(2)=5 counts UFD, UUDD, UDF, FUD, UDUD. - David Callan, Aug 23 2011

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 18*x^3 + 70*x^4 + 293*x^5 + 1283*x^6 + ...
		

Crossrefs

Leftmost column of triangle A073154 (was previous name).

Programs

  • GAP
    List([0..25],n->Sum([0..n],i->Binomial(2*i+1,i)*Binomial(2*i+1,n-i)/(2*i+1))); # Muniru A Asiru, Oct 11 2018
  • Maple
    a:=n->add(binomial(2*i+1,i)*binomial(2*i+1,n-i)/(2*i+1),i=0..n): seq(a(n),n=0..25); # Muniru A Asiru, Oct 11 2018
  • Mathematica
    Table[Sum[Binomial[2*i + 1, i]*Binomial[2*i + 1, n - i]/(2*i + 1), {i, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 11 2018 *)
  • Maxima
    a(n):=sum((sum((binomial(2*k+2,j-k)*binomial(2*k,k)/(k+1)),k,0,j))*(-1)^(n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
    
  • PARI
    {a(n)=local(A=1); for(i=0,n-1,A=(1+x)*(1+x*(A+x*O(x^n))^2));polcoeff(A,n)} /* Paul D. Hanna, Mar 03 2008 */
    

Formula

A073155(n+1) = Sum_{k=0..n} a(k)*a(n-k), that is, convolution yields sequence A073155 minus the 0th term.
G.f.: A(x) = (1 - sqrt(1 - 4*x*(1+x)^2))/(2*x*(1+x)) satisfies A(x) = (1+x)*(1 + x*A(x)^2);
G.f.: A(x) = (1+x)*C(x*(1+x)^2) where C(x) is the Catalan g.f. of A000108. - Paul D. Hanna, Mar 03 2008
a(n) = Sum_{j=0..n}((Sum_{k=0..j}((binomial(2*k+2,j-k)*C(k))))*(-1)^(n-j)), where C(k) = A000108(k). - Vladimir Kruchinin, Mar 13 2016
a(n) = Sum_{i=0..n} C(2*i+1,i)*C(2*i+1,n-i)/(2*i+1). - Vladimir Kruchinin, Oct 11 2018
Recurrence: (n+1)*a(n) = 3*(n-1)*a(n-1) + 6*(2*n - 3)*a(n-2) + 6*(2*n - 5)*a(n-3) + 2*(2*n - 7)*a(n-4). - Vaclav Kotesovec, Oct 11 2018
From Peter Bala, Aug 25 2024: (Start)
(1/x) * series_reversion(x/A(x)) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 + ... is the g.f. of A198953.
(1/x) * series_reversion(x*A(-x)) = 1 + 2*x + 3*x^2 + 8*x^3 + 25*x^4 + 83*x^5 + 289*x^6 + ... = G(x) + x, where G(x) = (1 - x^2 - sqrt(1 - 4*x - 2*x^2 + x^4))/(2*x) is the g.f. of A143330. (End)
Define a sequence operator R: {u(n): n >= 0} -> {v(n): n >= 0} by Sum_{n >= 0} v(n)*x^n = (1/x) * series_reversion(x/Sum_{n >= 0} u(n)*x^n). Then R({a(n)}) = A198953, R^2({a(n)}) = A215715 and R^3({a(n)}) = A364335. Cf. A216359. - Peter Bala, Sep 13 2024

Extensions

More terms from Paul D. Hanna, Mar 03 2008
New name using a comment from David Callan, Peter Luschny, Oct 14 2018

A198951 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^3).

Original entry on oeis.org

1, 1, 1, 2, 6, 16, 39, 99, 271, 763, 2146, 6062, 17359, 50337, 147057, 431874, 1275273, 3786649, 11298031, 33846202, 101762937, 306997821, 929038518, 2819426688, 8578433304, 26163061776, 79970186791, 244938841096, 751646959402, 2310683396056, 7115199919151
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

a(n) is also the number of rooted labeled trees on n nodes such that each node has 0, 1, 3, or 4 children. - Patrick Devlin, Mar 04 2012

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 39*x^6 + 99*x^7 + ...
Related expansions:
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 36*x^4 + 105*x^5 + 292*x^6 + ...
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 67*x^4 + 200*x^5 + 582*x^6 + ...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^2)*x + (1 + 2^2*x^2*A(x)^2 + x^4*A(x)^4)*x^2/2 +
(1 + 3^2*x^2*A(x)^2 + 3^2*x^4*A(x)^4 + x^6*A(x)^6)*x^3/3 +
(1 + 4^2*x^2*A(x)^2 + 6^2*x^4*A(x)^4 + 4^2*x^6*A(x)^6 + x^8*A(x)^8)*x^4/4 +
(1 + 5^2*x^2*A(x)^2 + 10^2*x^4*A(x)^4 + 10^2*x^6*A(x)^6 + 5^2*x^8*A(x)^8 + x^10*A(x)^10)*x^5/5 + ...
more explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 17*x^4/4 + 51*x^5/5 + 136*x^6/6 + 393*x^7/7 + 1233*x^8/8 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(A=(1+x*A)*(1+x^3*A^3), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2012
  • Mathematica
    InverseSeries[ Series[ x/((1 + x)*(1 + x^3)), {x, 0, 31}], x] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Sep 10 2013 *)
  • PARI
    {a(n)=local(A=1/x*serreverse(x/(1+x+x^3+x^4+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1+x+x^3+x^4+x*O(x^n))^(n+1)/(n+1), n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n,sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x^2*A^2)^(2*m+1)*sum(j=0, n\2, binomial(m+j, j)^2*x^(2*j)*(A^2+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}

Formula

G.f. satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * A(x)^(2*k) ).
(2) A(x) = (1/x)*Series_Reversion(x/((1+x)*(1+x^3))).
(3) a(n) = [x^n] (1 + x + x^3 + x^4)^(n+1) / (n+1).
(4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x^2*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^(2*k) * A(x)^(2*k) ).
D-finite with recurrence: 3*(n+1)*(3*n+2)*(3*n+4)*(119*n^3 - 210*n^2 + 73*n - 6)*a(n) = 2*(6664*n^6 - 1764*n^5 - 11585*n^4 + 426*n^3 + 4129*n^2 - 102*n - 288)*a(n-1) - 18*(n-1)*(1190*n^5 - 910*n^4 - 1937*n^3 + 895*n^2 + 606*n - 216)*a(n-2) + 162*(n-2)*(n-1)*(2*n-3)*(119*n^3 + 147*n^2 + 10*n - 24)*a(n-3). - Vaclav Kotesovec, Sep 09 2013
a(n) ~ c*d^n/n^(3/2), where d = 1/81*((2144134+520506*sqrt(17))^(2/3)+112*(2144134+520506*sqrt(17))^(1/3)-2036)/(2144134+520506*sqrt(17))^(1/3) = 3.23407602060970245... is the root of the equation -324 + 180*d - 112*d^2 + 27*d^3 = 0 and c = 0.6286981954423757284622435... - Vaclav Kotesovec, Sep 09 2013
A(1/d) = 370/243 + (3*sqrt(17)/509 - 3070/123687)*(2144134+520506*sqrt(17))^(1/3) + (141*sqrt(17)/2072648 - 129529/503653464)*(2144134+520506*sqrt(17))^(2/3) = 2.053716618436594614948796... - Vaclav Kotesovec, Sep 10 2013
From Peter Bala, Jun 21 2015: (Start)
a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1,k)* binomial(n + 1,n - 3*k). Applying Maple's sumrecursion command to this formula gives the above recurrence of Kotesovec.
More generally, the coefficient of x^n in A(x)^r equals r/(n + r)*Sum_{k = 0..floor(n/3)} binomial(n + r,k)*binomial(n + r,n - 3*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} A228960(n)*x^n/n), where A228960(n) = Sum_{k = 0..floor(n/3)} binomial(n,k)*binomial(n,3*k). Cf. A036765, A186241 and A200731. (End)

A198888 G.f. A(x) satisfies A(x) = (1 + x*A(x))*(1 + x^3*A(x)^4).

Original entry on oeis.org

1, 1, 1, 2, 7, 22, 61, 172, 528, 1695, 5447, 17486, 56778, 187064, 622149, 2080325, 6990670, 23621143, 80230388, 273687898, 937072049, 3219316096, 11095261035, 38351414036, 132915860364, 461770505371, 1607875309626, 5610314558562, 19614016834508, 68696001390320, 241007011551493
Offset: 0

Views

Author

Paul D. Hanna, Nov 03 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 61*x^6 + 172*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 236*x^5 + 766*x^6 +...
A(x)^5 = 1 + 5*x + 15*x^2 + 40*x^3 + 120*x^4 + 401*x^5 + 1340*x^6 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^4 + x^4*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^3)*x + (1 + 2^2*x^2*A(x)^3 + x^4*A(x)^6)*x^2/2 +
(1 + 3^2*x^2*A(x)^3 + 3^2*x^4*A(x)^6 + x^6*A(x)^9)*x^3/3 +
(1 + 4^2*x^2*A(x)^3 + 6^2*x^4*A(x)^6 + 4^2*x^6*A(x)^9 + x^8*A(x)^12)*x^4/4 +
(1 + 5^2*x^2*A(x)^3 + 10^2*x^4*A(x)^6 + 10^2*x^6*A(x)^9 + 5^2*x^8*A(x)^12 + x^10*A(x)^15)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 76*x^5/5 + 232*x^6/6 + 743*x^7/7 + 2629*x^8/8 + 9481*x^9/9 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+k,k]*Binomial[n+k+1,n-3*k]/(n+1),{k,0,Floor[n/3]}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=sum(k=0, n\3, binomial(n+k, k)*binomial(n+k+1, n-3*k))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^4)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x^2*A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x^2*A^3+x*O(x^n))^j)*(1-x^2*A^3)^(2*m+1)*x^m/m))); polcoeff(A, n, x)}

Formula

a(n) = Sum_{k=0..[n/3]} C(n+k, k)*C(n+k+1, n-3*k)/(n+1).
G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x/(1+x) - x^4 ). [Corrected by Seiichi Manyama, Dec 15 2024]
(2) A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = (1 + x)/(1 - x^3 - x^4).
(3) A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*x^(2*k)*A(x)^(3*k)] * x^n/n ).
(4) A(x) = exp( Sum_{n>=1} [Sum_{k>=0} C(n+k,k)^2*x^(2*k)*A(x)^(3*k)]*(1-x^2*A(x)^3)^(2*n+1)* x^n/n ).
Recurrence: 283*(n-2)*(n-1)*n*(n+1)*(23959952*n^4 - 257205740*n^3 + 1013304652*n^2 - 1735060589*n + 1087154052)*a(n) = 4*(n-2)*(n-1)*n*(8529742912*n^5 - 95830114896*n^4 + 406564828744*n^3 - 799079033082*n^2 + 700270562579*n - 198783157747)*a(n-1) - 8*(n-2)*(n-1)*(8625582720*n^6 - 109845231840*n^5 + 557377471920*n^4 - 1435513153260*n^3 + 1966313576808*n^2 - 1346689501571*n + 355664911636)*a(n-2) + 32*(n-2)*(4216951552*n^7 - 64244492224*n^6 + 407865945256*n^5 - 1396107234938*n^4 + 2774470392903*n^3 - 3187035309382*n^2 + 1946241786026*n - 482103205479)*a(n-3) - 16*(n-2)*(1150077696*n^7 - 19246341696*n^6 + 133834520688*n^5 - 499899483140*n^4 + 1078973257808*n^3 - 1338172075263*n^2 + 875535465587*n - 229801752572)*a(n-4) + 8*(n-4)*(2*n - 5)*(4*n - 17)*(4*n - 11)*(23959952*n^4 - 161365932*n^3 + 385447144*n^2 - 384228697*n + 132152327)*a(n-5). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 3.686367878047643633... is the root of the equation -256 + 768*d - 5632*d^2 + 2880*d^3 - 1424*d^4 + 283*d^5 = 0 and c = 0.73361916425726935915879240304621641469885... - Vaclav Kotesovec, Sep 18 2013

A199874 G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^2).

Original entry on oeis.org

1, 1, 3, 10, 37, 147, 611, 2625, 11564, 51953, 237123, 1096420, 5125063, 24178427, 114974387, 550511901, 2651896733, 12843003108, 62494595022, 305400429548, 1498184696271, 7375179807191, 36421312544431, 180383163330765, 895756907248150, 4459095182031675, 22247684478181317
Offset: 0

Views

Author

Paul D. Hanna, Nov 11 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 147*x^5 + 611*x^6 +...
where A( x/(1+x^2) - x^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 26*x^3 + 103*x^4 + 428*x^5 + 1838*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 80*x^3 + 359*x^4 + 1632*x^5 + 7506*x^6 +...
where A(x) = 1 + x*(1+x)*A(x)^2 + x^3*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x)*x*A(x) + (1 + 2^2*x + x^2)*x^2*A(x)^2/2 +
(1 + 3^2*x + 3^2*x^2 + x^3)*x^3*A(x)^3/3 +
(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^4*A(x)^4/4 +
(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)*x^5*A(x)^5/5 +
(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^6*A(x)^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 101*x^4/4 + 481*x^5/5 + 2330*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20;aa=ConstantArray[0,nmax];aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x*AGF^2)*(1+x^2*AGF^2)-AGF,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 18 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x/(1+x^2+x*O(x^n))-x^2),n)}
    
  • PARI
    {a(n)=polcoeff(((1+x^2)/(1-x-x^3+x*O(x^n)))^(n+1)/(n+1), n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j)*x^m*A^m/m))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x/(1+x^2) - x^2 ).
(2) A( x*(1-x-x^3)/(1+x^2) ) = (1+x^2)/(1-x-x^3).
(3) a(n) = [x^n] ((1+x^2)/(1-x-x^3))^(n+1) / (n+1).
(4) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k) * x^n*A(x)^n/n ).
(5) A(x) = exp( Sum_{n>=1} (1-x)^(2*n+1)*(Sum_{k>=0} C(n+k,k)^2*x^k) * x^n*A(x)^n/n ).
Recurrence: 31*(n-1)*n*(n+1)*(85396*n^4 - 902916*n^3 + 3471647*n^2 - 5767203*n + 3503250)*a(n) = 2*(n-1)*n*(6319304*n^5 - 69975436*n^4 + 290875210*n^3 - 559740413*n^2 + 484175751*n - 138985722)*a(n-1) + 2*(n-1)*(2903464*n^6 - 36506072*n^5 + 179801738*n^4 - 439606930*n^3 + 553204983*n^2 - 328951215*n + 67014378)*a(n-2) + 2*(2*n - 5)*(1964108*n^6 - 24695284*n^5 + 123902749*n^4 - 317652203*n^3 + 438313617*n^2 - 307740825*n + 85471038)*a(n-3) - 32*(n-3)*(2*n - 7)*(85396*n^5 - 860218*n^4 + 3249611*n^3 - 5747414*n^2 + 4753791*n - 1471338)*a(n-4) + 8*(n-4)*(n-3)*(2*n - 9)*(85396*n^4 - 561332*n^3 + 1275275*n^2 - 1191073*n + 390174)*a(n-5). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ c*d^n/n^(3/2), where d=5.28245622984... is the root of the equation -16 + 64*d - 92*d^2 - 68*d^3 - 148*d^4 + 31*d^5 = 0 and c = 0.49559010377906722118329... - Vaclav Kotesovec, Aug 18 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-2*k+1,k) * binomial(2*n-2*k+1,n-2*k) / (2*n-2*k+1). - Seiichi Manyama, Jul 18 2023

A192415 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^2).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 23, 51, 120, 286, 681, 1636, 3985, 9803, 24257, 60338, 150931, 379501, 958360, 2429294, 6179380, 15769380, 40361087, 103579221, 266471500, 687098810, 1775440421, 4596689688, 11922774513, 30977768907, 80615085087, 210103228155, 548352756656, 1433053608502
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 23*x^6 + 51*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 36*x^5 + 82*x^6 + 190*x^7 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 33*x^4 + 84*x^5 + 205*x^6 + 498*x^7 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^2 + x^4*A(x)^3.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x))*x + (1 + 2^2*x^2*A(x) + x^4*A(x)^2)*x^2/2 +
(1 + 3^2*x^2*A(x) + 3^2*x^4*A(x)^2 + x^6*A(x)^3)*x^3/3 +
(1 + 4^2*x^2*A(x) + 6^2*x^4*A(x)^2 + 4^2*x^6*A(x)^3 + x^8*A(x)^4)*x^4/4 +
(1 + 5^2*x^2*A(x) + 10^2*x^4*A(x)^2 + 10^2*x^6*A(x)^3 + 5^2*x^8*A(x)^4 + x^10*A(x)^5)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 13*x^4/4 + 31*x^5/5 + 70*x^6/6 + 176*x^7/7 + 469*x^8/8 + 1228*x^9/9 + 3161*x^10/10 +...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x^3*AGF^2) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^2)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    x='x; y='y; Fxy = (1+x*y) * (1 + x^3*y^2) - y;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy,y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(34)  \\ Gheorghe Coserea, Nov 30 2016

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(2*k) * A(x)^k ).
D-finite with recurrence: 4*(n+1)*(n+2)*(217*n^3 - 1239*n^2 + 1838*n - 336)*a(n) = 6*(n+1)*(434*n^4 - 2261*n^3 + 2339*n^2 + 1792*n - 1344)*a(n-1) - (n-1)*(2821*n^4 - 13286*n^3 + 7829*n^2 + 18464*n - 4032)*a(n-2) + 6*(868*n^5 - 6258*n^4 + 13981*n^3 - 7438*n^2 - 7769*n + 6136)*a(n-3) + 2*(n-3)*(2*n - 5)*(434*n^3 - 1393*n^2 + 211*n + 1048)*a(n-4) + 2*(n-4)*(2*n - 7)*(217*n^3 - 588*n^2 + 11*n + 480)*a(n-5). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 2.730683387097269698... is the root of the equation -4 - 8*d - 24*d^2 + 13*d^3 - 12*d^4 + 4*d^5 = 0 and c = 2.078548317061344694159945441842754... is the root of the equation -1 - 67*c^2 - 19811*c^4 + 36463*c^6 - 41664*c^8 + 7936*c^10 = 0. - Vaclav Kotesovec, Sep 19 2013, updated Nov 28 2016
a(n) = Sum_{k=0..n/2+1} C(n-k+2,k-1)*C(n-k+2,2*k-1)/(n-k+2). - Vladimir Kruchinin, Feb 12 2019

A364336 G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 7, 39, 242, 1634, 11631, 85957, 653245, 5072862, 40077807, 321106623, 2602911282, 21308131235, 175909559897, 1462846379247, 12242600576066, 103035285071630, 871490142773640, 7404121610615520, 63157400073057627, 540689217572662413, 4644083121177225292
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2023

Keywords

Crossrefs

Programs

  • Maple
    A364336 := proc(n)
        add( binomial(3*k+1,k) * binomial(3*k+1,n-k)/(3*k+1),k=0..n) ;
    end proc:
    seq(A364336(n),n=0..80); # R. J. Mathar, Jul 25 2023
  • Mathematica
    nmax = 80; A[_] = 1;
    Do[A[x_] = (1 + x)*(1 + x*A[x]^3) + O[x]^(nmax+1) // Normal, {nmax+1}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(3*k+1, n-k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*k+1,k) * binomial(3*k+1,n-k) / (3*k+1).
D-finite with recurrence -2*n*(2*n+1)*a(n) +(3*n^2+23*n-14)*a(n-1) +(207*n^2 -635*n +494)*a(n-2) +2*(397*n^2 -2031*n +2600)*a(n-3) +6*(75*n-244) *(3*n-11)*a(n-4) +9*(45*n-179) *(3*n-14)*a(n-5) +63*(3*n-14) *(3*n-17)*a(n-6) +12*(3*n-16) *(3*n-20)*a(n-7)=0. - R. J. Mathar, Jul 25 2023
From Peter Bala, Sep 10 2024: (Start)
x/series_reversion(x*A(x)) = 1 + 2*x + 3*x^2 + 13*x^3 + 32*x^4 + 147*x^5 + ..., the g.f. of A216359.
(1/x) * series_reversion(x/A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + 8551*x^5 + ..., the g.f. of A215623. (End)

A198957 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^2*A(x)^4).

Original entry on oeis.org

1, 1, 2, 7, 26, 102, 424, 1827, 8078, 36466, 167376, 778718, 3664164, 17407068, 83375616, 402198915, 1952296598, 9528757098, 46735576816, 230227356906, 1138609205372, 5651170500612, 28138939936704, 140527262919342, 703704207921932, 3532664478314484, 17775185122527776
Offset: 0

Views

Author

Paul D. Hanna, Nov 01 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 102*x^5 + 424*x^6 + 1827*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1028*x^5 + 4570*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 375*x^4 + 1681*x^5 + 7660*x^6 +...
where A(x) = 1 + x*A(x) + x^2*A(x)^4 + x^3*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^3)*x + (1 + 2^2*x*A(x)^3 + x^2*A(x)^6)*x^2/2 +
(1 + 3^2*x*A(x)^3 + 3^2*x^2*A(x)^6 + x^3*A(x)^9)*x^3/3 +
(1 + 4^2*x*A(x)^3 + 6^2*x^2*A(x)^6 + 4^2*x^3*A(x)^9 + x^4*A(x)^12)*x^4/4 +
(1 + 5^2*x*A(x)^3 + 10^2*x^2*A(x)^6 + 10^2*x^3*A(x)^9 + 5^2*x^4*A(x)^12 + x^5*A(x)^15)*x^5/5 +...
more explicitly,
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 75*x^4/4 + 356*x^5/5 + 1746*x^6/6 + 8660*x^7/7 + 43299*x^8/8 +...
Also, g.f. A(x) = G(x*A(x)) where G(x) = A(x/G(x)) (g.f. of A104545) begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[2*x^3*(1+x)/(1 - Sqrt[1-4*x^2*(1+x)^2]), {x, 0, 20}], x],x] (* Vaclav Kotesovec, May 28 2014 *)
  • Maxima
    a(n):=sum(binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1),j,0,(n)/2); /* Vladimir Kruchinin, May 28 2014 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*(A+x*O(x^n))^4)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x +x^3*O(x^n))^2))), n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A^3)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
    
  • PARI
    x='x; y='y; Fxy = (1 + x*y)*(1 + x^2*y^4) - y;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(27) \\ Gheorghe Coserea, Nov 30 2016

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k) ).
(2) A(x) = (1/x)*Series_Reversion( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x)^2)) ).
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps).
(4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x*A(x)^3)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^k * A(x)^(3*k) ).
a(n) = sum(j=0..n/2, binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1)). - Vladimir Kruchinin, May 28 2014
a(n) ~ sqrt((1 + 2*r*s^3 + 3*r^2*s^4)/(2*Pi*s*(3 + 5*r*s))) / (2*n^(3/2)*r^(n+1/2)), where r = 0.187614989725738719..., s = 1.61178302212918247... are roots of the system of equations r + 4*r^2*s^3 + 5*r^3*s^4 = 1, (1+r*s)*(1+r^2*s^4) = s. - Vaclav Kotesovec, May 28 2014

A200718 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x^2*A(x)^6).

Original entry on oeis.org

1, 1, 3, 14, 75, 433, 2636, 16668, 108399, 720431, 4871555, 33409042, 231817448, 1624503716, 11480658056, 81731416480, 585579734959, 4219179476875, 30552067317233, 222225174139730, 1622894404239115, 11894991079960721, 87472260252499560, 645183802300787356, 4771926560361458884
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 75*x^4 + 433*x^5 + 2636*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 34*x^3 + 187*x^4 + 1100*x^5 + 6784*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 194*x^3 + 1200*x^4 + 7674*x^5 + 50317*x^6 +...
A(x)^8 = 1 + 8*x + 52*x^2 + 336*x^3 + 2210*x^4 + 14776*x^5 + 100216*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^6 + x^3*A(x)^8.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^4)*x*A + (1 + 2^2*x*A^4 + x^2*A^8)*x^2*A^2/2 +
(1 + 3^2*x*A^4 + 3^2*x^2*A^8 + x^3*A^12)*x^3*A^3/3 +
(1 + 4^2*x*A^4 + 6^2*x^2*A^8 + 4^2*x^3*A^12 + x^4*A^16)*x^4*A^4/4 +
(1 + 5^2*x*A^4 + 10^2*x^2*A^8 + 10^2*x^3*A^12 + 5^2*x^4*A^16 + x^5*A^20)*x^5*A^5/5 + ...
The g.f. of A104545, G(x) = A(x/G(x)^2) where A(x) = G(x*A(x)^2), begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Binomial[2*n + 2*k + 1, k]*Binomial[2*n + 2*k + 1, n - 2*k]/ (2*n + 2*k + 1), {k, 0, n/2}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jan 09 2018, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((binomial(2*n+2*k+1,k)*binomial(2*n+2*k+1,n-2*k))/(2*n+2*k+1),k,0,(n)/2); /* Vladimir Kruchinin, Mar 11 2016 */
  • PARI
    {a(n)=polcoeff(sqrt( (1/x)*serreverse( 2*x^5*(1+x)^2/(1 - 2*x^2*(1+x)^2 - sqrt(1 - 4*x^2*(1+x)^2+O(x^(n+6)))) ) ),n)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( 2*x^5*(1+x)^2/(1 - 2*x^2*(1+x)^2 - sqrt(1 - 4*x^2*(1+x)^2)) ) ).
(2) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps).
(3) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(4*k)] ).
(4) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [(1-x/A(x)^4)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k * A(x)^(4*k)] ).
a(n) = Sum_{k=0..floor(n/2)}((binomial(2*n+2*k+1,k)*binomial(2*n+2*k+1,n-2*k))/(2*n+2*k+1)). - Vladimir Kruchinin, Mar 11 2016

A200719 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x^2*A(x)^5).

Original entry on oeis.org

1, 1, 3, 13, 64, 340, 1903, 11053, 65993, 402527, 2497439, 15712220, 100001459, 642719263, 4165537744, 27193644061, 178654643151, 1180282875483, 7836312619243, 52259258911091, 349902441457427, 2351240866736891, 15851508780927739, 107187240225220684, 726784821098903319
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 64*x^4 + 340*x^5 + 1903*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 163*x^4 + 886*x^5 + 5039*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 765*x^4 + 4481*x^5 + 26920*x^6 +...
A(x)^7 = 1 + 7*x + 42*x^2 + 252*x^3 + 1533*x^4 + 9457*x^5 + 59101*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^5 + x^3*A(x)^7.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^3)*x*A + (1 + 2^2*x*A^3 + x^2*A^6)*x^2*A^2/2 +
(1 + 3^2*x*A^3 + 3^2*x^2*A^6 + x^3*A^9)*x^3*A^3/3 +
(1 + 4^2*x*A^3 + 6^2*x^2*A^6 + 4^2*x^3*A^9 + x^4*A^12)*x^4*A^4/4 +
(1 + 5^2*x*A^3 + 10^2*x^2*A^6 + 10^2*x^3*A^9 + 5^2*x^4*A^12 + x^5*A^15)*x^5*A^5/5 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k)] ).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [(1-x/A(x)^3)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k * A(x)^(3*k)] ).
Recurrence: 4232*(n-2)*(n-1)*n*(2*n - 3)*(2*n - 1)*(2*n + 1)*(108983978975*n^7 - 1828734495225*n^6 + 13017379495661*n^5 - 50928975062019*n^4 + 118201965098732*n^3 - 162617590602876*n^2 + 122676758610192*n - 39103265134080)*a(n) = 8*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(850837923857825*n^9 - 15127768128079400*n^8 + 116088908648008427*n^7 - 502364025369222635*n^6 + 1342887860190877280*n^5 - 2280899268898038065*n^4 + 2433907848768834828*n^3 - 1548429898790214180*n^2 + 521138603722292640*n - 68863424146977600)*a(n-1) - 30*(n-2)*(2*n - 3)*(155302170039375*n^11 - 3227155335853125*n^10 + 29807524885054600*n^9 - 161278340404759950*n^8 + 566950865855228019*n^7 - 1356848300481904461*n^6 + 2250482361655315470*n^5 - 2579665279074165840*n^4 + 1996011605601581864*n^3 - 988803599084885136*n^2 + 280851990522009984*n - 34444332223983360)*a(n-2) + 5*(7288303593953125*n^13 - 187891351713750000*n^12 + 2204843674914291875*n^11 - 15579013461781304250*n^10 + 73867718896175411475*n^9 - 247858726321141236540*n^8 + 604530296941440837821*n^7 - 1082990060568950070282*n^6 + 1421457900098213642392*n^5 - 1345695224728829837040*n^4 + 889319601933492222864*n^3 - 386196670582228097568*n^2 + 97916706472751405568*n - 10797892365692920320)*a(n-3) + 10*(n-3)*(2*n - 7)*(5*n - 18)*(5*n - 14)*(5*n - 12)*(5*n - 11)*(108983978975*n^7 - 1065846642400*n^6 + 4333636082786*n^5 - 9458655747964*n^4 + 11899609166891*n^3 - 8554104592084*n^2 + 3208950812340*n - 473478110640)*a(n-4). - Vaclav Kotesovec, Nov 17 2017
a(n) ~ s * sqrt((r*s*(r*s^3 - 1) - 3) / (7*Pi*(5*r*s*(1 + r*s^3) - 3))) / (2*n^(3/2)*r^n), where r = 0.1385102270697349252376651829944449360743895474888... and s = 1.450646440303399446510765649245639306003224666768... are real roots of the system of equations (1 + r*s^2)*(1 + r^2*s^5) = s, r*s*(2 + 5*r*s^3 + 7*r^2*s^5) = 1. - Vaclav Kotesovec, Nov 22 2017
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(2*n+k+1,n-2*k) / (2*n+k+1). - Seiichi Manyama, Jul 18 2023

A215654 G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 2, 11, 81, 684, 6257, 60325, 603641, 6210059, 65272503, 697898849, 7566847547, 82999675563, 919376968734, 10269588489433, 115548651723889, 1308374198000780, 14897993185500455, 170482798370871370, 1959574731164246402, 22614008012647634411, 261915716386286916342
Offset: 0

Views

Author

Paul D. Hanna, Aug 19 2012

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = (1 + x^r*F(x)^(p+1)) * (1 + x^(r+s)*F(x)^(p+q+1)), then
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ).
The radius of convergence of g.f. A(x) is r = 0.08035832347291483065438962031... with A(r) = 1.5393913914574609282262181402132760790902539070... where y=A(r) satisfies 20*y^3 - 38*y^2 + 15*y - 6 = 0.
r = 1/(187/300*17^(2/3) + 119/75*17^(1/3) + 1273/300). - Vaclav Kotesovec, Sep 17 2013
Number of hybrid ternary trees with n internal nodes. [Hong and Park]. - N. J. A. Sloane, Mar 26 2014

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 81*x^3 + 684*x^4 + 6257*x^5 + 60325*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 26*x^2 + 206*x^3 + 1813*x^4 + 17032*x^5 +...
A(x)^3 = 1 + 6*x + 45*x^2 + 383*x^3 + 3519*x^4 + 34023*x^5 +...
A(x)^5 = 1 + 10*x + 95*x^2 + 925*x^3 + 9270*x^4 + 95237*x^5 +...
where A(x) = 1 + x*(A(x)^2 + A(x)^3) + x^2*A(x)^5.
The g.f. also satisfies the series:
A(x) = 1 + 2*x*A(x)^2 + 3*x^2*A(x)^4 + 5*x^3*A(x)^6 + 8*x^4*A(x)^8 + 13*x^5*A(x)^10 + 21*x^6*A(x)^12 + 34*x^7*A(x)^14 +...+ Fibonacci(n+2)*x^n*A(x)^(2*n) +...
and consequently, A( x*(1-x-x^2)^2/(1+x)^2 ) = (1+x)/(1-x-x^2).
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x))*x*A(x) + (1 + 2^2*A(x) + A(x)^2)*x^2*A(x)^2/2 +
(1 + 3^2*A(x) + 3^2*A(x)^2 + A(x)^3)*x^3*A(x)^3/3 +
(1 + 4^2*A(x) + 6^2*A(x)^2 + 4^2*A(x)^3 + A(x)^4)*x^4*A(x)^4/4 +
(1 + 5^2*A(x) + 10^2*A(x)^2 + 10^2*A(x)^3 + 5^2*A(x)^4 + A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 185*x^3/3 + 2006*x^4/4 + 22412*x^5/5 + 255249*x^6/6 + 2946155*x^7/7 + 34342270*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^(2*n)/(1-x-x^2)^(2*n) / 2.
		

Crossrefs

Column k=3 of A245049.

Programs

  • Maple
    a:= n-> coeff(series(RootOf((1+x*A^2)*(1+x*A^3)-A, A), x, n+1), x, n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Apr 04 2019
  • Mathematica
    CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-x-x^2)^2/(1+x)^2,{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • Maxima
    a(n):=sum(binomial(2*n+i,i)*binomial(2*n+i+1,n-i),i,0,n)/(2*n+1); /* Vladimir Kruchinin, Apr 04 2019 */
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^3)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff(sqrt((1/x)*serreverse( x*(1-x-x^2)^2/(1+x +x*O(x^n))^2)), n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(2*n+1)/(2*n+1),n)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-x-x^2)^2/(1+x)^2 ) ).
(2) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(4) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(2*n).
(5) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^3).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(2*n+1) / (2*n+1).
Recurrence: 100*(n-1)*n*(2*n-1)*(2*n+1)*(4913*n^3 - 26877*n^2 + 49912*n - 30480)*a(n) = 2*(n-1)*(2*n-1)*(6254249*n^5 - 40468670*n^4 + 99110119*n^3 - 109861414*n^2 + 52822608*n - 8566560)*a(n-1) - 3*(2343501*n^7 - 22194333*n^6 + 87905623*n^5 - 187987155*n^4 + 233161624*n^3 - 166253172*n^2 + 62010112*n - 8952000)*a(n-2) + 6*(n-2)*(2*n-5)*(3*n-8)*(3*n-4)*(4913*n^3 - 12138*n^2 + 10897*n - 2532)*a(n-3). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ 1/1020*sqrt(73695 + 11730*17^(2/3) + 28815*17^(1/3)) * (187/300*17^(2/3) + 119/75*17^(1/3) + 1273/300)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
a(n) = 1/(2*n+1)*Sum_{i=0..n} C(2*n+i,i)*C(2*n+i+1,n-i). - Vladimir Kruchinin, Apr 04 2019
Showing 1-10 of 29 results. Next