A064580
Triangle associated with rooted trees with a degree constraint (A036765).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 13, 1, 5, 14, 28, 40, 36, 1, 6, 20, 48, 87, 118, 104, 1, 7, 27, 75, 161, 273, 357, 309, 1, 8, 35, 110, 270, 536, 866, 1100, 939, 1, 9, 44, 154, 423, 951, 1782, 2772, 3441, 2905, 1, 10, 54, 208, 630, 1572, 3310, 5928, 8946, 10900, 9118
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 5, 5;
1, 4, 9, 14, 13;
1, 5, 14, 28, 40, 36;
...
-
a[n_, k_] /; 0 <= k <= n = a[n, k] = a[n - 1, k] + a[n - 1, k - 1] + a[n - 1, k - 2] + a[n - 1, k - 3]; a[0, 0] = 1; a[, ] = 0;
Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
-
# uses[riordan_array from A256893]
M = riordan_array(1, x/(1+x+x^2+x^3), 12).inverse()
for m in M[1:]:
print([r for r in reversed(list(m)) if r != 0]) # Peter Luschny, Aug 17 2016
A246555
a(n) = A036765(n-1) if n>0, with a(0) = 1.
Original entry on oeis.org
1, 1, 1, 2, 5, 13, 36, 104, 309, 939, 2905, 9118, 28964, 92940, 300808, 980864, 3219205, 10626023, 35252867, 117485454, 393133485, 1320357501, 4449298136, 15038769672, 50973266380, 173214422068, 589998043276, 2014026871496, 6889055189032, 23608722350440
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 36*x^6 + 104*x^7 + 309*x^8 + ...
A198953
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).
Original entry on oeis.org
1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
-
a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
A198951
G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^3).
Original entry on oeis.org
1, 1, 1, 2, 6, 16, 39, 99, 271, 763, 2146, 6062, 17359, 50337, 147057, 431874, 1275273, 3786649, 11298031, 33846202, 101762937, 306997821, 929038518, 2819426688, 8578433304, 26163061776, 79970186791, 244938841096, 751646959402, 2310683396056, 7115199919151
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 39*x^6 + 99*x^7 + ...
Related expansions:
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 36*x^4 + 105*x^5 + 292*x^6 + ...
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 67*x^4 + 200*x^5 + 582*x^6 + ...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^2)*x + (1 + 2^2*x^2*A(x)^2 + x^4*A(x)^4)*x^2/2 +
(1 + 3^2*x^2*A(x)^2 + 3^2*x^4*A(x)^4 + x^6*A(x)^6)*x^3/3 +
(1 + 4^2*x^2*A(x)^2 + 6^2*x^4*A(x)^4 + 4^2*x^6*A(x)^6 + x^8*A(x)^8)*x^4/4 +
(1 + 5^2*x^2*A(x)^2 + 10^2*x^4*A(x)^4 + 10^2*x^6*A(x)^6 + 5^2*x^8*A(x)^8 + x^10*A(x)^10)*x^5/5 + ...
more explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 17*x^4/4 + 51*x^5/5 + 136*x^6/6 + 393*x^7/7 + 1233*x^8/8 + ...
-
a:= n-> coeff(series(RootOf(A=(1+x*A)*(1+x^3*A^3), A), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, May 16 2012
-
InverseSeries[ Series[ x/((1 + x)*(1 + x^3)), {x, 0, 31}], x] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Sep 10 2013 *)
-
{a(n)=local(A=1/x*serreverse(x/(1+x+x^3+x^4+x*O(x^n)))); polcoeff(A, n)}
-
{a(n)=polcoeff((1+x+x^3+x^4+x*O(x^n))^(n+1)/(n+1), n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n,sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x^2*A^2)^(2*m+1)*sum(j=0, n\2, binomial(m+j, j)^2*x^(2*j)*(A^2+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
A243753
Number A(n,k) of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 4, 1, 1, 0, 0, 0, 1, 1, 2, 4, 1, 9, 1, 1, 0, 0, 0, 1, 1, 2, 4, 9, 1, 21, 1, 1, 0, 0, 0, 1, 1, 1, 4, 9, 21, 1, 51, 1, 1, 0, 0, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 1, 1, 1, 1, 2, 2, 2, ...
0, 0, 0, 1, 1, 2, 1, 4, 4, 4, ...
0, 0, 0, 1, 1, 4, 1, 9, 9, 9, ...
0, 0, 0, 1, 1, 9, 1, 21, 21, 23, ...
0, 0, 0, 1, 1, 21, 1, 51, 51, 63, ...
0, 0, 0, 1, 1, 51, 1, 127, 127, 178, ...
0, 0, 0, 1, 1, 127, 1, 323, 323, 514, ...
0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ...
Columns give: 0, 1, 2:
A000007, 3, 4, 6:
A000012, 5:
A001006(n-1) for n>0, 7, 8, 14:
A001006, 9:
A135307, 10:
A078481 for n>0, 11, 13:
A105633(n-1) for n>0, 12:
A082582, 15, 16:
A036765, 19, 27:
A114465, 20, 24, 26:
A157003, 21:
A247333, 25:
A187256(n-1) for n>0.
Cf.
A242450,
A243827,
A243828,
A243829,
A243830,
A243831,
A243832,
A243833,
A243834,
A243835,
A243836.
-
A:= proc(n, k) option remember; local b, m, r, h;
if k<2 then return `if`(n=0, 1, 0) fi;
m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:=
proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
`if`(t=m and r=1, 0, b(x-1, y+1, irem(2*t+1, h)))+
`if`(t=m and r=0, 0, b(x-1, y-1, irem(2*t, h)))))
end; forget(b);
b(2*n, 0, 0)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k<2, Return[If[n == 0, 1, 0]]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, If[t == m && r == 1, 0, b[x-1, y+1, Mod[2*t+1, h]]] + If[t == m && r == 0, 0, b[x-1, y-1, Mod[2*t, h]]]]]; b[2*n, 0, 0]]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)
A059968
Number of 10-ary trees.
Original entry on oeis.org
1, 1, 10, 145, 2470, 46060, 910252, 18730855, 397089550, 8612835715, 190223180840, 4263421511271, 96723482198980, 2216905597676000, 51256802757808320, 1194060413809070710, 27999654303202465310, 660370070571422998410, 15654733143626084944150
Offset: 0
Claude Lenormand (claude.lenormand(AT)free.fr), Mar 05 2001
There are a(2)=10 10-ary trees (vertex degree <=10 and 10 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 10 trees yields 10*10+binomial(10,2)=145=a(3) such trees. - _Wolfdieter Lang_, Sep 14 2007.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
Related algebraic sequences concerning trees: strictly k-ary trees (
A000108: s=x+s^2,
A001263: s=(x, y)+(x, s)+(s, y)+(s, s))), (
A001764: s=x+s^3), (
A002293: s=x+s^4), (
A002294: s=x+s^5), (
A002295: s=x+s^6), (
A002296: s=x+s^7), (
A007556: s=x+s^8), at most k-ary trees (
A001006: s=x+xs+xs^2), (
A036765-
A036769, s=x+xs^2....+xs^k, k=3, 4, 5, 6, 7).
-
seq(binomial(10*k+1, k)/(9*k+1), k=0..30);
n:=30:G:=series(RootOf(g = 1+x*g^10, g), x=0, n+1):seq(coeff(G, x, k), k=0..n); # Robert FERREOL, Apr 01 2015
-
a[n_] := Binomial[10n, n]/(9n+1);
a /@ Range[0, 25] (* Jean-François Alcover, Jan 17 2020 *)
A198888
G.f. A(x) satisfies A(x) = (1 + x*A(x))*(1 + x^3*A(x)^4).
Original entry on oeis.org
1, 1, 1, 2, 7, 22, 61, 172, 528, 1695, 5447, 17486, 56778, 187064, 622149, 2080325, 6990670, 23621143, 80230388, 273687898, 937072049, 3219316096, 11095261035, 38351414036, 132915860364, 461770505371, 1607875309626, 5610314558562, 19614016834508, 68696001390320, 241007011551493
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 61*x^6 + 172*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 236*x^5 + 766*x^6 +...
A(x)^5 = 1 + 5*x + 15*x^2 + 40*x^3 + 120*x^4 + 401*x^5 + 1340*x^6 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^4 + x^4*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x)^3)*x + (1 + 2^2*x^2*A(x)^3 + x^4*A(x)^6)*x^2/2 +
(1 + 3^2*x^2*A(x)^3 + 3^2*x^4*A(x)^6 + x^6*A(x)^9)*x^3/3 +
(1 + 4^2*x^2*A(x)^3 + 6^2*x^4*A(x)^6 + 4^2*x^6*A(x)^9 + x^8*A(x)^12)*x^4/4 +
(1 + 5^2*x^2*A(x)^3 + 10^2*x^4*A(x)^6 + 10^2*x^6*A(x)^9 + 5^2*x^8*A(x)^12 + x^10*A(x)^15)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 21*x^4/4 + 76*x^5/5 + 232*x^6/6 + 743*x^7/7 + 2629*x^8/8 + 9481*x^9/9 +...
-
Table[Sum[Binomial[n+k,k]*Binomial[n+k+1,n-3*k]/(n+1),{k,0,Floor[n/3]}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=sum(k=0, n\3, binomial(n+k, k)*binomial(n+k+1, n-3*k))/(n+1)}
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^4)); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x^2*A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x^2*A^3+x*O(x^n))^j)*(1-x^2*A^3)^(2*m+1)*x^m/m))); polcoeff(A, n, x)}
A199874
G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^2).
Original entry on oeis.org
1, 1, 3, 10, 37, 147, 611, 2625, 11564, 51953, 237123, 1096420, 5125063, 24178427, 114974387, 550511901, 2651896733, 12843003108, 62494595022, 305400429548, 1498184696271, 7375179807191, 36421312544431, 180383163330765, 895756907248150, 4459095182031675, 22247684478181317
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 147*x^5 + 611*x^6 +...
where A( x/(1+x^2) - x^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 26*x^3 + 103*x^4 + 428*x^5 + 1838*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 80*x^3 + 359*x^4 + 1632*x^5 + 7506*x^6 +...
where A(x) = 1 + x*(1+x)*A(x)^2 + x^3*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x)*x*A(x) + (1 + 2^2*x + x^2)*x^2*A(x)^2/2 +
(1 + 3^2*x + 3^2*x^2 + x^3)*x^3*A(x)^3/3 +
(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^4*A(x)^4/4 +
(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)*x^5*A(x)^5/5 +
(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^6*A(x)^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 101*x^4/4 + 481*x^5/5 + 2330*x^6/6 +...
-
nmax=20;aa=ConstantArray[0,nmax];aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x*AGF^2)*(1+x^2*AGF^2)-AGF,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 18 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
-
{a(n)=polcoeff((1/x)*serreverse(x/(1+x^2+x*O(x^n))-x^2),n)}
-
{a(n)=polcoeff(((1+x^2)/(1-x-x^3+x*O(x^n)))^(n+1)/(n+1), n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j)*x^m*A^m/m))); polcoeff(A, n, x)}
A192415
G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^3*A(x)^2).
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 23, 51, 120, 286, 681, 1636, 3985, 9803, 24257, 60338, 150931, 379501, 958360, 2429294, 6179380, 15769380, 40361087, 103579221, 266471500, 687098810, 1775440421, 4596689688, 11922774513, 30977768907, 80615085087, 210103228155, 548352756656, 1433053608502
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 23*x^6 + 51*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 36*x^5 + 82*x^6 + 190*x^7 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 33*x^4 + 84*x^5 + 205*x^6 + 498*x^7 +...
where A(x) = 1 + x*A(x) + x^3*A(x)^2 + x^4*A(x)^3.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^2*A(x))*x + (1 + 2^2*x^2*A(x) + x^4*A(x)^2)*x^2/2 +
(1 + 3^2*x^2*A(x) + 3^2*x^4*A(x)^2 + x^6*A(x)^3)*x^3/3 +
(1 + 4^2*x^2*A(x) + 6^2*x^4*A(x)^2 + 4^2*x^6*A(x)^3 + x^8*A(x)^4)*x^4/4 +
(1 + 5^2*x^2*A(x) + 10^2*x^4*A(x)^2 + 10^2*x^6*A(x)^3 + 5^2*x^8*A(x)^4 + x^10*A(x)^5)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 13*x^4/4 + 31*x^5/5 + 70*x^6/6 + 176*x^7/7 + 469*x^8/8 + 1228*x^9/9 + 3161*x^10/10 +...
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x^3*AGF^2) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^3*(A+x*O(x^n))^2)); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^(2*j)*(A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
-
x='x; y='y; Fxy = (1+x*y) * (1 + x^3*y^2) - y;
seq(N) = {
my(y0 = 1 + O('x^N), y1=0);
for (k = 1, N,
y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy,y), y, y0);
if (y1 == y0, break()); y0 = y1);
Vec(y0);
};
seq(34) \\ Gheorghe Coserea, Nov 30 2016
A198957
G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^2*A(x)^4).
Original entry on oeis.org
1, 1, 2, 7, 26, 102, 424, 1827, 8078, 36466, 167376, 778718, 3664164, 17407068, 83375616, 402198915, 1952296598, 9528757098, 46735576816, 230227356906, 1138609205372, 5651170500612, 28138939936704, 140527262919342, 703704207921932, 3532664478314484, 17775185122527776
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 102*x^5 + 424*x^6 + 1827*x^7 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1028*x^5 + 4570*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 375*x^4 + 1681*x^5 + 7660*x^6 +...
where A(x) = 1 + x*A(x) + x^2*A(x)^4 + x^3*A(x)^5.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^3)*x + (1 + 2^2*x*A(x)^3 + x^2*A(x)^6)*x^2/2 +
(1 + 3^2*x*A(x)^3 + 3^2*x^2*A(x)^6 + x^3*A(x)^9)*x^3/3 +
(1 + 4^2*x*A(x)^3 + 6^2*x^2*A(x)^6 + 4^2*x^3*A(x)^9 + x^4*A(x)^12)*x^4/4 +
(1 + 5^2*x*A(x)^3 + 10^2*x^2*A(x)^6 + 10^2*x^3*A(x)^9 + 5^2*x^4*A(x)^12 + x^5*A(x)^15)*x^5/5 +...
more explicitly,
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 75*x^4/4 + 356*x^5/5 + 1746*x^6/6 + 8660*x^7/7 + 43299*x^8/8 +...
Also, g.f. A(x) = G(x*A(x)) where G(x) = A(x/G(x)) (g.f. of A104545) begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
-
CoefficientList[1/x*InverseSeries[Series[2*x^3*(1+x)/(1 - Sqrt[1-4*x^2*(1+x)^2]), {x, 0, 20}], x],x] (* Vaclav Kotesovec, May 28 2014 *)
-
a(n):=sum(binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1),j,0,(n)/2); /* Vladimir Kruchinin, May 28 2014 */
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*(A+x*O(x^n))^4)); polcoeff(A, n)}
-
{a(n)=polcoeff((1/x)*serreverse( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x +x^3*O(x^n))^2))), n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A^3)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}
-
x='x; y='y; Fxy = (1 + x*y)*(1 + x^2*y^4) - y;
seq(N) = {
my(y0 = 1 + O('x^N), y1=0);
for (k = 1, N,
y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
if (y1 == y0, break()); y0 = y1);
Vec(y0);
};
seq(27) \\ Gheorghe Coserea, Nov 30 2016
Showing 1-10 of 48 results.
Comments