A064581 Duplicate of A064580.
1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 13, 1, 5, 14, 28, 40, 36, 1, 6, 20, 48, 87, 118, 104
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(4) = 13 since the top row of M^4 = (13, 8, 4, 1, 1). From _Joerg Arndt_, Oct 31 2012: (Start) a(5)=36 because there are 36 Dyck words of length 5 that avoid "1111": [ #] RGS rises Dyck word [ 1] [ . . . . . ] [ . . . . . ] 1.1.1.1.1. [ 2] [ . . . . 1 ] [ . . . . 1 ] 1.1.1.11.. [ 3] [ . . . 1 . ] [ . . . 1 . ] 1.1.11..1. [ 4] [ . . . 1 1 ] [ . . . 1 . ] 1.1.11.1.. [ 5] [ . . . 1 2 ] [ . . . 1 2 ] 1.1.111... [ 6] [ . . 1 . . ] [ . . 1 . . ] 1.11..1.1. [ 7] [ . . 1 . 1 ] [ . . 1 . 1 ] 1.11..11.. [ 8] [ . . 1 1 . ] [ . . 1 . . ] 1.11.1..1. [ 9] [ . . 1 1 1 ] [ . . 1 . . ] 1.11.1.1.. [10] [ . . 1 1 2 ] [ . . 1 . 1 ] 1.11.11... [11] [ . . 1 2 . ] [ . . 1 2 . ] 1.111...1. [12] [ . . 1 2 1 ] [ . . 1 2 . ] 1.111..1.. [13] [ . . 1 2 2 ] [ . . 1 2 . ] 1.111.1... [--] [ . . 1 2 3 ] [ . . 1 2 3 ] 1.1111.... [14] [ . 1 . . . ] [ . 1 . . . ] 11..1.1.1. [15] [ . 1 . . 1 ] [ . 1 . . 1 ] 11..1.11.. [16] [ . 1 . 1 . ] [ . 1 . 1 . ] 11..11..1. [17] [ . 1 . 1 1 ] [ . 1 . 1 . ] 11..11.1.. [18] [ . 1 . 1 2 ] [ . 1 . 1 2 ] 11..111... [19] [ . 1 1 . . ] [ . 1 . . . ] 11.1..1.1. [20] [ . 1 1 . 1 ] [ . 1 . . 1 ] 11.1..11.. [21] [ . 1 1 1 . ] [ . 1 . . . ] 11.1.1..1. [22] [ . 1 1 1 1 ] [ . 1 . . . ] 11.1.1.1.. [23] [ . 1 1 1 2 ] [ . 1 . . 1 ] 11.1.11... [24] [ . 1 1 2 . ] [ . 1 . 1 . ] 11.11...1. [25] [ . 1 1 2 1 ] [ . 1 . 1 . ] 11.11..1.. [26] [ . 1 1 2 2 ] [ . 1 . 1 . ] 11.11.1... [27] [ . 1 1 2 3 ] [ . 1 . 1 2 ] 11.111.... [28] [ . 1 2 . . ] [ . 1 2 . . ] 111...1.1. [29] [ . 1 2 . 1 ] [ . 1 2 . 1 ] 111...11.. [30] [ . 1 2 1 . ] [ . 1 2 . . ] 111..1..1. [31] [ . 1 2 1 1 ] [ . 1 2 . . ] 111..1.1.. [32] [ . 1 2 1 2 ] [ . 1 2 . 1 ] 111..11... [33] [ . 1 2 2 . ] [ . 1 2 . . ] 111.1...1. [34] [ . 1 2 2 1 ] [ . 1 2 . . ] 111.1..1.. [35] [ . 1 2 2 2 ] [ . 1 2 . . ] 111.1.1... [36] [ . 1 2 2 3 ] [ . 1 2 . 1 ] 111.11.... [--] [ . 1 2 3 . ] [ . 1 2 3 . ] 1111....1. [--] [ . 1 2 3 1 ] [ . 1 2 3 . ] 1111...1.. [--] [ . 1 2 3 2 ] [ . 1 2 3 . ] 1111..1... [--] [ . 1 2 3 3 ] [ . 1 2 3 . ] 1111.1.... [--] [ . 1 2 3 4 ] [ . 1 2 3 4 ] 11111..... (Dots are used for zeros for readability.) (End)
[&+[Binomial(n+1, n-2*k)*Binomial(n+1, k)/(n+1): k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Oct 16 2018
r := 3; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1),j=0..floor((n-1)/(r+1))), n=1..30) ]; # second Maple program: b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..min(1, u))+ add(b(u+j-1, o-j), j=1..min(3, o))) end: a:= n-> b(0, n): seq(a(n), n=0..30); # Alois P. Heinz, Aug 28 2017
InverseSeries[Series[y/(1+y+y^2+y^3), {y, 0, 24}], x] (* then A(x)=y(x)/x *) (* Len Smiley, Apr 11 2000 *) b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]]; a[n_] := b[0, n, 3]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 05 2017, after Alois P. Heinz *) Table[HypergeometricPFQ[{-n-1, (1-n)/2, -n/2}, {1, 3/2}, -1], {n, 0, 28}] (* Vladimir Reshetnikov, Oct 15 2018 *)
{a(n)=sum(j=0,n\2,binomial(n+1, n-2*j)*binomial(n+1,j))/(n+1)}
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A+(x*A)^2+(x*A)^3);polcoeff(A,n)}
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(x*A+x*O(x^n))^j)*x^m/m)));polcoeff(A, n, x)}
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(j=0, n, binomial(m+j, j)^2*(x*A+x*O(x^n))^j)*(1-x*A)^(2*m+1)*x^m/m)));polcoeff(A, n, x)}
{a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))*exp(sum(m=1,n,A^m*sum(k=0,m-1,binomial(m-1,k)*binomial(m,k)*x^k)/(1-x)^(2*m)*x^(2*m)/m) +x*O(x^n)));polcoeff(A,n)} /* Paul D. Hanna */
{a(n)=local(A=1+x);for(i=1,n,A=1/(1-x+x*O(x^n))*exp(sum(m=1,n,A^m*sum(k=0,n,binomial(m+k-1,k)*binomial(m+k,k)*x^k)*x^(2*m)/m) +x*O(x^n)));polcoeff(A,n)} /* Paul D. Hanna */
Vec(serreverse(x/(1+x+x^2+x^3)+O(x^66))/x) /* Joerg Arndt, Jun 10 2011 */
terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]]; col[4] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
a(n):=if n=1 then 1 else sum(k*sum(binomial(n-1,j)*sum(binomial(j,i-j)*binomial(n-j-1,3*j-n-k-i+1),i,j,n-k+j-1),j,0,n-1),k,1,n-1)/(n-1); /* Vladimir Kruchinin, Oct 23 2011 */
Vec(1/(1-serreverse(x*(1-x)/(1-x^4) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
G.f.: A(x) is the limit of composition of functions x/(1-x^n): F_1(x) = x/(1-x) F_2(x) = x/(1-x^2) o F_1(x) = x + x^2 + 2x^3 + 4x^4 + 8x^5 + 16x^6 +... F_3(x) = x/(1-x^3) o F_2(x) = x + x^2 + 2x^3 + 5x^4 + 12x^5 + 30x^6 +... F_4(x) = x/(1-x^4) o F_3(x) = x + x^2 + 2x^3 + 5x^4 + 13x^5 + 35x^6 +... F_5(x) = x/(1-x^5) o F_4(x) = x + x^2 + 2x^3 + 5x^4 + 13x^5 + 36x^6 +... F_6(x) = x/(1-x^6) o x/(1-x^5) o x/(1-x^4) o x/(1-x^3) o x/(1-x^2) o x/(1-x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 36*x^6 + 104*x^7 + 309*x^8 + 934*x^9 + ...
{a(n)=local(A=x+x*O(x^n));if(n<=0,0,for(i=1,n,A=A/(1-A^i));polcoeff(A,n))} for(n=1,40,print1(a(n),", "))
Comments