cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A007863 Number of hybrid binary trees with n internal nodes.

Original entry on oeis.org

1, 2, 7, 31, 154, 820, 4575, 26398, 156233, 943174, 5785416, 35955297, 225914342, 1432705496, 9158708775, 58954911423, 381806076426, 2485972170888, 16263884777805, 106858957537838, 704810376478024, 4664987368511948, 30974829705533240, 206266525653071416
Offset: 0

Views

Author

Jean Pallo (pallo(AT)u-bourgogne.fr)

Keywords

Comments

From Benoit Jubin, May 27 2012: (Start)
Definition of hybrid binary trees:
An (a,n)-labeled binary tree is a binary tree where each internal node is labeled by "a" (for associative) or "n" (for nonassociative). We define on the set of (a,n)-labeled binary trees with a given number of nodes an equivalence relation as follows: denote a tree with a root labeled "a" with left subtree A and right subtree B by AaB. Then we declare the trees (AaB)aC and Aa(BaC) equivalent, and two trees are equivalent if and only if one can go from one to the other by doing such transformations within any of their subtrees.
A hybrid binary tree is an equivalence class of (a,n)-labeled binary trees under this relation. (End)
Also the number of Dyck n-paths with up steps colored in two ways (N or A) and avoiding AA. The 7 Dyck 2-paths are NDND, NDAD, ADND, ADAD, NNDD, NADD, and ANDD. - David Scambler, May 21 2012

Examples

			G.f. = 1 + 2*x + 7*x^2 + 31*x^3 + 154*x^4 + 820*x^5 + 4575*x^6 + ...
		

Crossrefs

Column k=2 of A245049.

Programs

  • Macsyma
    taylor_solve_choose_order:true; taylor_solve( A^3*X^2+A^2*X+A*(X-1)+1,A,X,0,[ 20 ]);
    
  • Maple
    A:= proc(n) option remember; if n=0 then 1 else convert(series((x^2 *A(n-1)^3 +x*A(n-1)^2 +1)/ (1-x), x=0,n+1), polynom) fi end: a:= n-> coeff(A(n), x, n): seq(a(n), n=0..30); # Alois P. Heinz, Aug 22 2008
  • Mathematica
    InverseSeries[Series[(y-y^2-y^3)/(1+y), {y, 0, 24}], x] (* then A(x)=y(x)/x . - Len Smiley, Apr 14 2000 *)
    Table[ HypergeometricPFQ[{-n, 1 + n, 2 + n}, {1, 3/2}, -(1/4)], {n,0,23}] (* Olivier Gérard, Apr 23 2009 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[{-n, 1 + n, 2 + n}, {1, 3/2}, -1/4]]; (* Michael Somos, Dec 31 2014 *)
  • PARI
    {a(n) = if( n<0, 0, sum(k=0, n, binomial(n+k, n) * binomial(n+k+1, n-k)) / (n+1))};
    
  • PARI
    {a(n) = local(A = 1 + x + x * O(x^n)); for(i=1, n, A = 1 + x * (A + A^2) + x^2 * A^3); polcoeff(A, n)};
    
  • PARI
    {a(n) = local(A=1+x); for(i=1, n, A = exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * (A + x * O(x^n))^j) * x^m / m))); polcoeff(A, n, x)};

Formula

G.f. A(x) satisfies: x^2*A(x)^3 + x*A(x)^2 + (-1+x)*A(x) + 1 = 0.
a(n) = 3F2({-n, n+1, n+2 } ; {1, 3/2})( -(1/4) ). - Olivier Gérard, Apr 23 2009
a(n) = (1/(n+1))*Sum_{k=0..n} binomial(n+k,n)*binomial(n+k+1,n-k). - Vladimir Kruchinin, Dec 24 2010
G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*A(x)^k] * x^n/n ). - Paul D. Hanna, Feb 13 2011
The formal inverse of the g.f. A(x) is (sqrt(5*x^2 - 2*x + 1) - (1+x))/(2*x^2). - Paul D. Hanna, Aug 21 2012
The radius of convergence of g.f. A(x) is r = 0.1407810125... with A(r) = 2.1107712092... such that y=A(r) satisfies 5*y^3 - 12*y^2 + 4*y - 2 = 0. - Paul D. Hanna, Aug 21 2012
D-finite with recurrence: 45*n*(n+1)*a(n) - 2*n*(157*n-71)*a(n-1) + 12*(-3*n^2+15*n-14)*a(n-2) + 2*(-14*n^2+43*n-21)*a(n-3) - 4*(n-3)*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jun 03 2014
Recurrence (of order 3): 5*n*(n+1)*(35*n-62)*a(n) = 6*n*(210*n^2 - 477*n + 181)*a(n-1) - 4*n*(35*n^2 - 132*n + 115)*a(n-2) + 2*(n-2)*(2*n-5)*(35*n-27)*a(n-3). - Vaclav Kotesovec, Jul 11 2014
a(n) ~ sqrt((s*(1+s+2*r*s^2))/(1+3*r*s)) / (2*sqrt(Pi) * r^n * n^(3/2)), where r = 52/(3*(181 + 105*sqrt(105))^(1/3)) - 1/6*(181 + 105*sqrt(105))^(1/3) + 1/3 = 0.1407810125885522212..., s = 1/15*(12 + (1323 - 105*sqrt(105))^(1/3) + (21*(63 + 5*sqrt(105)))^(1/3)) = 2.110771209224758867... . - Vaclav Kotesovec, Jul 11 2014

A144015 Expansion of e.g.f. 1/(1 - sin(4*x))^(1/4).

Original entry on oeis.org

1, 1, 5, 29, 265, 3001, 42125, 696149, 13296145, 287706481, 6959431445, 186061833869, 5448382252825, 173418192216361, 5961442393047965, 220112963745653189, 8687730877758518305, 365023930617143804641, 16266420334783460443685, 766297734521812843642109
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2008

Keywords

Comments

Row sums of A186492 - Peter Bala, Feb 22 2011.

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 29*x^3/3! + 265*x^4/4! + 3001*x^5/5! +...
log(A(x)) = x + 4*x^2/2! + 16*x^3/3! + 128*x^4/4! + 1280*x^5/5! +...
A(x)^2/A(-x)^2 = 1 + 4*x + 16*x^2/2! + 128*x^3/3! +...+ 4^n*A000111(n)*x^n/n! +...
O.g.f.: 1/(1-x - 4*1*1*x^2/(1-5*x - 4*2*3*x^2/(1-9*x - 4*3*5*x^2/(1-13*x - 4*4*7*x^2/(1-17*x - 4*5*9*x^2/(1-...)))))) [continued fraction by Sergei Gladkovskii].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[4*x])^(1/4), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cos(2*X)-sin(2*X))^(-1/2), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=exp(intformal(A^2/subst(A^2,x,-x))));n!*polcoeff(A,n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From A'(x) = A(x)^3 / A(-x)^2: */
    {a(n)=local(A=1); for(i=0, n, A=1+intformal(A^3/subst(A, x, -x)^2 +x*O(x^n) )); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* 1/sqrt(1-2*Series_Reversion(Integral 1/sqrt(1+4*x-4*x^2) dx)): */
    {a(n)=local(A=1);A=1/sqrt(1-2*serreverse(intformal(1/sqrt(1+4*x-4*x^2 +x*O(x^n)))));n!*polcoeff(A, n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007696(n) = prod(k=0, n-1, 4*k+1);
    a(n) = sum(k=0, n, a007696(k)*(4*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

E.g.f. A(x) satisfies:
(1) A(x) = (cos(2*x) - sin(2*x))^(-1/2).
(2) A(x)^2/A(-x)^2 = 1/cos(4*x) + tan(4*x).
(3) A(x) = exp( Integral A(x)^2/A(-x)^2 dx).
(4) A'(x) = A(x)^3/A(-x)^2 with A(0) = 1.
(5) A(x) = 1/sqrt(1 - 2*Series_Reversion( Integral 1/sqrt(1+4*x-4*x^2) dx )).
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+1) - 4*x^2*(k+1)*(2*k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 11 2013.
a(n) ~ 2^(3*n+5/4)*n^n/(exp(n)*Pi^(n+1/2)). - Vaclav Kotesovec, Jun 26 2013
a(n) = Sum_{k=0..n} A007696(k) * (4*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A227544 Expansion of e.g.f. 1/(1 - sin(6*x))^(1/6).

Original entry on oeis.org

1, 1, 7, 55, 721, 11761, 240247, 5801095, 162512161, 5171130721, 184337942887, 7275081518935, 314918762166001, 14834964193292881, 755507853144691927, 41362173671901329575, 2422478811455080626241, 151132171549872325122241, 10006051653759338150151367, 700695219796759105368529015
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2013

Keywords

Comments

Generally, for e.g.f. 1/(1-sin(p*x))^(1/p) we have a(n) ~ n! * 2^(n+3/p) * p^n / (Gamma(2/p) * n^(1-2/p) * Pi^(n+2/p)). - Vaclav Kotesovec, Jan 03 2014

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 55*x^3/3! + 721*x^4/4! + 11761*x^5/5! + ...
where A(x)^3 = 1 + 3*x + 27*x^2/2! + 297*x^3/3! + 4617*x^4/4! + 87723*x^5/5! + ...
and 1/A(x)^3 = 1 - 3*x - 9*x^2/2! + 27*x^3/3! + 81*x^4/4! - 243*x^5/5! + ...
which illustrates 1/A(x)^3 = cos(3*x) - sin(3*x).
O.g.f.: 1/(1-x - 6*1*1*x^2/(1-7*x - 6*2*4*x^2/(1-13*x - 6*3*7*x^2/(1-19*x - 6*4*10*x^2/(1-25*x - 6*5*13*x^2/(1-...)))))), a continued fraction.
		

Crossrefs

Cf. A001586 (p=2), A007788 (p=3), A144015 (p=4), A230134 (p=5), A235128 (p=7), A230114 (p=8).

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[6*x])^(1/6), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cos(3*X)-sin(3*X))^(-1/3), n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^3/subst(A^3, x, -x)))); n!*polcoeff(A, n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a008542(n) = prod(k=0, n-1, 6*k+1);
    a(n) = sum(k=0, n, a008542(k)*(6*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

E.g.f. A(x) satisfies:
(1) A(x) = (cos(3*x) - sin(3*x))^(-1/3).
(2) A(x)^3/A(-x)^3 = 1/cos(6*x) + tan(6*x).
(3) A(x) = exp( Integral A(x)^3/A(-x)^3 dx ).
O.g.f.: 1/G(0) where G(k) = 1 - (6*k+1)*x - 6*(k+1)*(3*k+1)*x^2/G(k+1) [continued fraction formula from A144015 due to Sergei N. Gladkovskii].
a(n) ~ n! * 2^(2*n+1/2) * 3^n / (Gamma(1/3) * n^(2/3) * Pi^(n+1/3)). - Vaclav Kotesovec, Jan 03 2014
a(n) = Sum_{k=0..n} A008542(k) * (6*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A230114 Expansion of e.g.f. 1/(1 - sin(8*x))^(1/8).

Original entry on oeis.org

1, 1, 9, 89, 1521, 32401, 869049, 27608489, 1019581281, 42824944801, 2017329504489, 105299243488889, 6032850630082641, 376363074361201201, 25396689469918450329, 1843101478742259481289, 143145930384321475601601, 11846611289341729822881601, 1040750126963789832859930569
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2013

Keywords

Comments

Generally, for e.g.f. 1/(1-sin(p*x))^(1/p) is a(n) ~ n! * 2^(n+3/p) * p^n / (Gamma(2/p) * n^(1-2/p) * Pi^(n+2/p)). - Vaclav Kotesovec, Jan 03 2014

Examples

			E.g.f.: A(x) = 1 + x + 9*x^2/2! + 89*x^3/3! + 1521*x^4/4! + 32401*x^5/5! + ...
where A(x)^4 = 1 + 4*x + 48*x^2/2! + 704*x^3/3! + 14592*x^4/4! + 369664*x^5/5! + ...
and 1/A(x)^4 = 1 - 4*x - 16*x^2/2! + 64*x^3/3! + 256*x^4/4! - 1024*x^5/5! + ...
which illustrates 1/A(x)^4 = cos(4*x) - sin(4*x).
O.g.f.: 1/(1-x - 8*1*1*x^2/(1-9*x - 8*2*5*x^2/(1-17*x - 8*3*9*x^2/(1-25*x - 8*4*13*x^2/(1-33*x - 8*5*17*x^2/(1-...)))))), a continued fraction.
		

Crossrefs

Cf. A001586 (p=2), A007788 (p=3), A144015 (p=4), A230134 (p=5), A227544 (p=6), A235128 (p=7).

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[8*x])^(1/8), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cos(4*X)-sin(4*X))^(-1/4), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^4/subst(A^4, x, -x)))); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a045755(n) = prod(k=0, n-1, 8*k+1);
    a(n) = sum(k=0, n, a045755(k)*(8*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

E.g.f. A(x) satisfies:
(1) A(x) = (cos(4*x) - sin(4*x))^(-1/4).
(2) A(x)^4/A(-x)^4 = 1/cos(8*x) + tan(8*x).
(3) A(x) = exp( Integral A(x)^4/A(-x)^4 dx ).
O.g.f.: 1/G(0) where G(k) = 1 - (8*k+1)*x - 8*(k+1)*(4*k+1)*x^2/G(k+1) [continued fraction formula from A144015 due to Sergei N. Gladkovskii].
a(n) ~ n! * 2^(4*n+3/8) / (Gamma(1/4) * n^(3/4) * Pi^(n+1/4)). - Vaclav Kotesovec, Jan 03 2014
a(n) = Sum_{k=0..n} A045755(k) * (8*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A230134 Expansion of e.g.f. 1/(1 - sin(5*x))^(1/5).

Original entry on oeis.org

1, 1, 6, 41, 456, 6301, 108576, 2207981, 52012416, 1390239481, 41593598976, 1376769180401, 49955931795456, 1971671764875541, 84095262825824256, 3854514200269774901, 188942180401957502976, 9863099585213327293681, 546266997049408050364416, 31993839349571172423492281
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 41*x^3/3! + 456*x^4/4! + 6301*x^5/5! +...
O.g.f.: 1/(1-x - 5*1*2/2*x^2/(1-6*x - 5*2*7/2*x^2/(1-11*x - 5*3*12/2*x^2/(1-16*x - 5*4*17/2*x^2/(1-21*x - 5*5*22/2*x^2/(1-...)))))), a continued fraction.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[5*x])^(1/5), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((1-sin(5*X))^(-1/5), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^(5/2)/subst(A^(5/2), x, -x)))); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a008548(n) = prod(k=0, n-1, 5*k+1);
    a(n) = sum(k=0, n, a008548(k)*(5*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

E.g.f. A(x) satisfies: A(x) = (cos(5*x/2) - sin(5*x/2))^(-2/5).
O.g.f.: 1/G(0) where G(k) = 1 - (5*k+1)*x - 5*(k+1)*(5*k+2)/2*x^2/G(k+1) [continued fraction formula from A144015 due to Sergei N. Gladkovskii].
a(n) ~ n! * sqrt(5+sqrt(5)) * Gamma(3/5) * 2^(n-9/10) * 5^n / (n^(3/5) * Pi^(n+7/5)). - Vaclav Kotesovec, Jan 03 2014
a(n) = Sum_{k=0..n} A008548(k) * (5*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A235128 Expansion of e.g.f. 1/(1 - sin(7*x))^(1/7).

Original entry on oeis.org

1, 1, 8, 71, 1072, 20161, 476288, 13315751, 432387712, 15959926081, 660372282368, 30265936565831, 1522069164439552, 83327826089289601, 4933286107483701248, 314052936209639958311, 21392225375507849838592, 1552501782546292090638721, 119588747474281844162428928
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 03 2014

Keywords

Comments

Generally, for e.g.f. 1/(1-sin(p*x))^(1/p) we have a(n) ~ n! * 2^(n+3/p) * p^n / (Gamma(2/p) * n^(1-2/p) * Pi^(n+2/p)).

Crossrefs

Cf. A001586 (p=2), A007788 (p=3), A144015 (p=4), A230134 (p=5), A227544 (p=6), A230114 (p=8).

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[7*x])^(1/7), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a045754(n) = prod(k=0, n-1, 7*k+1);
    a(n) = sum(k=0, n, a045754(k)*(7*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

a(n) ~ n! * 2^(n+3/7) * 7^n / (Gamma(2/7) * n^(5/7) * Pi^(n+2/7)).
a(n) = Sum_{k=0..n} A045754(k) * (7*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A235135 Expansion of e.g.f. 1/(1 - sinh(3*x))^(1/3).

Original entry on oeis.org

1, 1, 4, 37, 424, 6241, 113824, 2460277, 61504384, 1746727201, 55545439744, 1955176596517, 75470959673344, 3169939381277761, 143927870364811264, 7024566555751464757, 366742587098140770304, 20394984041632355113921, 1203587891190987380752384, 75124090160952970927512997
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 03 2014

Keywords

Comments

Generally, for e.g.f. 1/(1-sinh(p*x))^(1/p) we have a(n) ~ n! * p^n / (Gamma(1/p) * 2^(1/(2*p)) * n^(1-1/p) * (arcsinh(1))^(n+1/p)).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sinh[3*x])^(1/3), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*3^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

a(n) ~ n! * 3^n / (Gamma(1/3) * 2^(1/6) * n^(2/3) * (log(1+sqrt(2)))^(n+1/3)).
a(n) = Sum_{k=0..n} A007559(k) * 3^(n-k) * A136630(n,k). - Seiichi Manyama, Jun 24 2025

A385307 Expansion of e.g.f. 1/(1 - 3 * sin(x))^(1/3).

Original entry on oeis.org

1, 1, 4, 27, 264, 3361, 52704, 981707, 21176704, 519150241, 14255163904, 433384277787, 14451212550144, 524406240059521, 20572970822959104, 867641565719168267, 39145118179183427584, 1881294510800399083201, 95950279080398196834304, 5176039012712211526485147
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*I^(n-k)*a136630(n, k));

Formula

a(n) = Sum_{k=0..n} A007559(k) * i^(n-k) * A136630(n,k), where i is the imaginary unit.
a(n) ~ n! / (sqrt(2) * Gamma(1/3) * n^(2/3) * arcsin(1/3)^(n + 1/3)). - Vaclav Kotesovec, Jun 28 2025

A385422 Expansion of e.g.f. 1/(1 - arcsin(3*x))^(1/3).

Original entry on oeis.org

1, 1, 4, 37, 424, 6889, 129376, 3004597, 78196864, 2363157937, 78520720384, 2924352594373, 118146438461440, 5232528466643737, 248845526415892480, 12778931460471237397, 699044652076991610880, 40846771050451091426785, 2526020027235443981025280
Offset: 0

Views

Author

Seiichi Manyama, Jun 28 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-asin(3*x))^(1/3)))

Formula

a(n) = Sum_{k=0..n} A007559(k) * 3^(n-k) * A385343(n,k).
a(n) ~ sqrt(2*Pi) * cos(1)^(1/3) * 3^n * n^(n - 1/6) / (Gamma(1/3) * sin(1)^(n + 1/3) * exp(n)). - Vaclav Kotesovec, Jun 28 2025

A385896 Array read by ascending antidiagonals: A(n, k) = k! * [x^k] (1 - sin(n*x))^(-1/n) for n > 0, A(0, k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 16, 1, 1, 1, 5, 19, 57, 61, 1, 1, 1, 6, 29, 136, 361, 272, 1, 1, 1, 7, 41, 265, 1201, 2763, 1385, 1, 1, 1, 8, 55, 456, 3001, 13024, 24611, 7936, 1, 1, 1, 9, 71, 721, 6301, 42125, 165619, 250737, 50521, 1
Offset: 0

Views

Author

Peter Luschny, Jul 20 2025

Keywords

Examples

			Table starts:
  [0] 1, 1, 1,  1,    1,     1,      1, ... [A000012]
  [1] 1, 1, 2,  5,   16,    61,    272, ... [A000111]
  [2] 1, 1, 3, 11,   57,   361,   2763, ... [A001586]
  [3] 1, 1, 4, 19,  136,  1201,  13024, ... [A007788]
  [4] 1, 1, 5, 29,  265,  3001,  42125, ... [A144015]
  [5] 1, 1, 6, 41,  456,  6301, 108576, ... [A230134]
  [6] 1, 1, 7, 55,  721, 11761, 240247, ... [A227544]
  [7] 1, 1, 8, 71, 1072, 20161, 476288, ... [A235128]
  [8] 1, 1, 9, 89, 1521, 32401, 869049, ... [A230114]
     [A000027]  | [A187277] | [A385898].
            [A028387]   [A385897]
.
Seen as a triangle:
  [0] 1;
  [1] 1, 1;
  [2] 1, 1, 1;
  [3] 1, 1, 2,  1;
  [4] 1, 1, 3,  5,   1;
  [5] 1, 1, 4, 11,  16,    1;
  [6] 1, 1, 5, 19,  57,   61,    1;
  [7] 1, 1, 6, 29, 136,  361,  272,    1;
  [8] 1, 1, 7, 41, 265, 1201, 2763, 1385, 1;
		

Crossrefs

Programs

  • Maple
    MAX := 16: ser := n -> series((1 - sin(n*x))^(-1/n), x, MAX):
    A := (n, k) -> if n = 0 then 1 else k!*coeff(ser(n), x, k) fi:
    seq(lprint(seq(A(n, k), k = 0..8)), n = 0..8);
  • Mathematica
    T[n_, k_, m_] := T[n, k, m] =
      Which[
        n <  0 || k <  0, 0,
        n == 0 && k == 0, 1,
        k == 0, T[n - 1, n - 1, m],
        True, T[n, k - 1, m] + m*T[n - 1, n - k - 1, m]
    ];
    A[n_, k_] := T[k, k, n - k];
    Table[A[n, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

A(n, k) = T(k, k, n - k) where T(n, k, m) = T(n, k-1, m) + m * T(n-1, n-k-1, m) for k > 0, T(n, 0, m) = T(n-1, n-1, m), and T(0, 0, m) = 1.
Column n is a linear recurrence with kernel [(-1)^k*A135278(n, k), k = 0..n].
Showing 1-10 of 10 results.