cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A007788 Number of augmented Andre 3-signed permutations: E.g.f. (1-sin(3*x))^(-1/3).

Original entry on oeis.org

1, 1, 4, 19, 136, 1201, 13024, 165619, 2425216, 40132801, 740882944, 15091932019, 336257744896, 8134269015601, 212309523595264, 5946914908771219, 177934946000306176, 5663754614516217601, 191097349696090537984, 6812679868133940475219, 255885704427935576621056
Offset: 0

Views

Author

R. Ehrenborg (ehrenbor(AT)lacim.uqam.ca) and M. A. Readdy (readdy(AT)lacim.uqam.ca)

Keywords

Comments

It appears that all members are of the form 3k+1. - Ralf Stephan, Nov 12 2007

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( (1-Sin(3*x))^(-1/3) ))); // G. C. Greubel, Mar 05 2020
    
  • Maple
    m:=20; S:=series( (1-sin(3*x))^(-1/3), x, m+1): seq(j!*coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 05 2020
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-Sin[3x])^(-1/3),{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Nov 23 2011 *)
  • PARI
    Vec(serlaplace( (1-sin(3*x))^(-1/3) +O('x^20) )) \\ G. C. Greubel, Mar 05 2020
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007559(n) = prod(k=0, n-1, 3*k+1);
    a(n) = sum(k=0, n, a007559(k)*(3*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025
    
  • Sage
    m=20;
    def A007788_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1-sin(3*x))^(-1/3) ).list()
    a=A007788_list(m+1); [factorial(n)*a[n] for n in (0..m)] # G. C. Greubel, Mar 05 2020

Formula

E.g.f.: (1-sin(3*x))^(-1/3).
a(n) ~ n! * 2*6^n/(Pi^(n+2/3)*n^(1/3)*Gamma(2/3)). - Vaclav Kotesovec, Jun 25 2013
a(n) = Sum_{k=0..n} A007559(k) * (3*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A227544 Expansion of e.g.f. 1/(1 - sin(6*x))^(1/6).

Original entry on oeis.org

1, 1, 7, 55, 721, 11761, 240247, 5801095, 162512161, 5171130721, 184337942887, 7275081518935, 314918762166001, 14834964193292881, 755507853144691927, 41362173671901329575, 2422478811455080626241, 151132171549872325122241, 10006051653759338150151367, 700695219796759105368529015
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2013

Keywords

Comments

Generally, for e.g.f. 1/(1-sin(p*x))^(1/p) we have a(n) ~ n! * 2^(n+3/p) * p^n / (Gamma(2/p) * n^(1-2/p) * Pi^(n+2/p)). - Vaclav Kotesovec, Jan 03 2014

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 55*x^3/3! + 721*x^4/4! + 11761*x^5/5! + ...
where A(x)^3 = 1 + 3*x + 27*x^2/2! + 297*x^3/3! + 4617*x^4/4! + 87723*x^5/5! + ...
and 1/A(x)^3 = 1 - 3*x - 9*x^2/2! + 27*x^3/3! + 81*x^4/4! - 243*x^5/5! + ...
which illustrates 1/A(x)^3 = cos(3*x) - sin(3*x).
O.g.f.: 1/(1-x - 6*1*1*x^2/(1-7*x - 6*2*4*x^2/(1-13*x - 6*3*7*x^2/(1-19*x - 6*4*10*x^2/(1-25*x - 6*5*13*x^2/(1-...)))))), a continued fraction.
		

Crossrefs

Cf. A001586 (p=2), A007788 (p=3), A144015 (p=4), A230134 (p=5), A235128 (p=7), A230114 (p=8).

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[6*x])^(1/6), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cos(3*X)-sin(3*X))^(-1/3), n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^3/subst(A^3, x, -x)))); n!*polcoeff(A, n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a008542(n) = prod(k=0, n-1, 6*k+1);
    a(n) = sum(k=0, n, a008542(k)*(6*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

E.g.f. A(x) satisfies:
(1) A(x) = (cos(3*x) - sin(3*x))^(-1/3).
(2) A(x)^3/A(-x)^3 = 1/cos(6*x) + tan(6*x).
(3) A(x) = exp( Integral A(x)^3/A(-x)^3 dx ).
O.g.f.: 1/G(0) where G(k) = 1 - (6*k+1)*x - 6*(k+1)*(3*k+1)*x^2/G(k+1) [continued fraction formula from A144015 due to Sergei N. Gladkovskii].
a(n) ~ n! * 2^(2*n+1/2) * 3^n / (Gamma(1/3) * n^(2/3) * Pi^(n+1/3)). - Vaclav Kotesovec, Jan 03 2014
a(n) = Sum_{k=0..n} A008542(k) * (6*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A230114 Expansion of e.g.f. 1/(1 - sin(8*x))^(1/8).

Original entry on oeis.org

1, 1, 9, 89, 1521, 32401, 869049, 27608489, 1019581281, 42824944801, 2017329504489, 105299243488889, 6032850630082641, 376363074361201201, 25396689469918450329, 1843101478742259481289, 143145930384321475601601, 11846611289341729822881601, 1040750126963789832859930569
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2013

Keywords

Comments

Generally, for e.g.f. 1/(1-sin(p*x))^(1/p) is a(n) ~ n! * 2^(n+3/p) * p^n / (Gamma(2/p) * n^(1-2/p) * Pi^(n+2/p)). - Vaclav Kotesovec, Jan 03 2014

Examples

			E.g.f.: A(x) = 1 + x + 9*x^2/2! + 89*x^3/3! + 1521*x^4/4! + 32401*x^5/5! + ...
where A(x)^4 = 1 + 4*x + 48*x^2/2! + 704*x^3/3! + 14592*x^4/4! + 369664*x^5/5! + ...
and 1/A(x)^4 = 1 - 4*x - 16*x^2/2! + 64*x^3/3! + 256*x^4/4! - 1024*x^5/5! + ...
which illustrates 1/A(x)^4 = cos(4*x) - sin(4*x).
O.g.f.: 1/(1-x - 8*1*1*x^2/(1-9*x - 8*2*5*x^2/(1-17*x - 8*3*9*x^2/(1-25*x - 8*4*13*x^2/(1-33*x - 8*5*17*x^2/(1-...)))))), a continued fraction.
		

Crossrefs

Cf. A001586 (p=2), A007788 (p=3), A144015 (p=4), A230134 (p=5), A227544 (p=6), A235128 (p=7).

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[8*x])^(1/8), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cos(4*X)-sin(4*X))^(-1/4), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^4/subst(A^4, x, -x)))); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a045755(n) = prod(k=0, n-1, 8*k+1);
    a(n) = sum(k=0, n, a045755(k)*(8*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

E.g.f. A(x) satisfies:
(1) A(x) = (cos(4*x) - sin(4*x))^(-1/4).
(2) A(x)^4/A(-x)^4 = 1/cos(8*x) + tan(8*x).
(3) A(x) = exp( Integral A(x)^4/A(-x)^4 dx ).
O.g.f.: 1/G(0) where G(k) = 1 - (8*k+1)*x - 8*(k+1)*(4*k+1)*x^2/G(k+1) [continued fraction formula from A144015 due to Sergei N. Gladkovskii].
a(n) ~ n! * 2^(4*n+3/8) / (Gamma(1/4) * n^(3/4) * Pi^(n+1/4)). - Vaclav Kotesovec, Jan 03 2014
a(n) = Sum_{k=0..n} A045755(k) * (8*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A230134 Expansion of e.g.f. 1/(1 - sin(5*x))^(1/5).

Original entry on oeis.org

1, 1, 6, 41, 456, 6301, 108576, 2207981, 52012416, 1390239481, 41593598976, 1376769180401, 49955931795456, 1971671764875541, 84095262825824256, 3854514200269774901, 188942180401957502976, 9863099585213327293681, 546266997049408050364416, 31993839349571172423492281
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 41*x^3/3! + 456*x^4/4! + 6301*x^5/5! +...
O.g.f.: 1/(1-x - 5*1*2/2*x^2/(1-6*x - 5*2*7/2*x^2/(1-11*x - 5*3*12/2*x^2/(1-16*x - 5*4*17/2*x^2/(1-21*x - 5*5*22/2*x^2/(1-...)))))), a continued fraction.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[5*x])^(1/5), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((1-sin(5*X))^(-1/5), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^(5/2)/subst(A^(5/2), x, -x)))); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a008548(n) = prod(k=0, n-1, 5*k+1);
    a(n) = sum(k=0, n, a008548(k)*(5*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

E.g.f. A(x) satisfies: A(x) = (cos(5*x/2) - sin(5*x/2))^(-2/5).
O.g.f.: 1/G(0) where G(k) = 1 - (5*k+1)*x - 5*(k+1)*(5*k+2)/2*x^2/G(k+1) [continued fraction formula from A144015 due to Sergei N. Gladkovskii].
a(n) ~ n! * sqrt(5+sqrt(5)) * Gamma(3/5) * 2^(n-9/10) * 5^n / (n^(3/5) * Pi^(n+7/5)). - Vaclav Kotesovec, Jan 03 2014
a(n) = Sum_{k=0..n} A008548(k) * (5*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A186492 Recursive triangle for calculating A186491.

Original entry on oeis.org

1, 0, 1, 2, 0, 3, 0, 14, 0, 15, 28, 0, 132, 0, 105, 0, 5556, 0, 1500, 0, 945, 1112, 0, 10668, 0, 1995, 0, 10395, 0, 43784, 0, 212940, 0, 304290, 0, 135135, 87568, 0, 1408992, 0, 4533480, 0, 5239080, 0, 2027025
Offset: 0

Views

Author

Peter Bala, Feb 22 2011

Keywords

Comments

The table entries are defined by a recurrence relation (see below).
This triangle can be used to calculate the entries of A186491: the nonzero entries of the first column of the triangle give A186491.
PRODUCTION MATRIX
The production matrix P for this triangle is the bidiagonal matrix with the sequence [2,4,6,...] on the main subdiagonal, the sequence [1,3,5,...] on the main superdiagonal and 0's elsewhere: the first row of P^n is the n-th row of this triangle.

Examples

			Table begins
n\k|.....0.....1......2.....3......4.....5......6
=================================================
0..|.....1
1..|.....0.....1
2..|.....2.....0......3
3..|.....0....14......0....15
4..|....28.....0....132.....0....105
5..|.....0...556......0..1500......0...945
6..|..1112.....0..10668.....0..19950.....0..10395
..
Examples of recurrence relation
T(4,2) = 3*T(3,1) + 6*T(3,3) = 3*14 + 6*15 = 132;
T(6,4) = 7*T(5,3) + 10*T(5,5) = 7*1500 + 10*945 = 19950.
		

Crossrefs

Programs

  • Mathematica
    R[0][] = 1; R[1][u] = u;
    R[n_][u_] := R[n][u] = 2(1+u^2) R[n-1]'[u] + u R[n-1][u];
    Table[CoefficientList[R[n][u], u], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 13 2019 *)

Formula

Recurrence relation
(1)... T(n,k) = (2*k-1)*T(n-1,k-1)+(2*k+2)*T(n-1,k+1).
GENERATING FUNCTION
E.g.f. (Compare with the e.g.f. of A104035):
(2)... 1/sqrt(cos(2*t)-u*sin(2*t)) = sum {n = 0..inf } R(n,u)*t^n/n! = 1 + u*t + (2+3*u^2)*t^2/2! + (14*u+15*u^3)*t^3/3!+....
ROW POLYNOMIALS
The row polynomials R(n,u) begin
... R(1,u) = u
... R(2,u) = 2+3*u^2
... R(3,u) = 14*u+15*u^3
... R(4,u) = 28+132*u^2+105u^4.
They satisfy the recurrence relation
(3)... R(n+1,u) = 2*(1+u^2)*d/du(R(n,u))+u*R(n,u) with starting value R(0,u) = 1.
Compare with Formula (1) of A104035 for the polynomials Q_n(u).
The polynomials R(n,u) are related to the shifted row polynomials A(n,u) of A142459 via
(4)... R(n,u) = ((u+I)/2)^n*A(n+1,(u-I)/(u+I))
with the inverse identity
(5)... A(n+1,u) = (-I)^n*(1-u)^n*R(n,I*(1+u)/(1-u)),
where {A(n,u)}n>=1 begins [1,1+u,1+10*u+u^2,1+59*u+59*u^2+u^3,...] and I = sqrt(-1).

A235128 Expansion of e.g.f. 1/(1 - sin(7*x))^(1/7).

Original entry on oeis.org

1, 1, 8, 71, 1072, 20161, 476288, 13315751, 432387712, 15959926081, 660372282368, 30265936565831, 1522069164439552, 83327826089289601, 4933286107483701248, 314052936209639958311, 21392225375507849838592, 1552501782546292090638721, 119588747474281844162428928
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 03 2014

Keywords

Comments

Generally, for e.g.f. 1/(1-sin(p*x))^(1/p) we have a(n) ~ n! * 2^(n+3/p) * p^n / (Gamma(2/p) * n^(1-2/p) * Pi^(n+2/p)).

Crossrefs

Cf. A001586 (p=2), A007788 (p=3), A144015 (p=4), A230134 (p=5), A227544 (p=6), A230114 (p=8).

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[7*x])^(1/7), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a045754(n) = prod(k=0, n-1, 7*k+1);
    a(n) = sum(k=0, n, a045754(k)*(7*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

a(n) ~ n! * 2^(n+3/7) * 7^n / (Gamma(2/7) * n^(5/7) * Pi^(n+2/7)).
a(n) = Sum_{k=0..n} A045754(k) * (7*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A385896 Array read by ascending antidiagonals: A(n, k) = k! * [x^k] (1 - sin(n*x))^(-1/n) for n > 0, A(0, k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 16, 1, 1, 1, 5, 19, 57, 61, 1, 1, 1, 6, 29, 136, 361, 272, 1, 1, 1, 7, 41, 265, 1201, 2763, 1385, 1, 1, 1, 8, 55, 456, 3001, 13024, 24611, 7936, 1, 1, 1, 9, 71, 721, 6301, 42125, 165619, 250737, 50521, 1
Offset: 0

Views

Author

Peter Luschny, Jul 20 2025

Keywords

Examples

			Table starts:
  [0] 1, 1, 1,  1,    1,     1,      1, ... [A000012]
  [1] 1, 1, 2,  5,   16,    61,    272, ... [A000111]
  [2] 1, 1, 3, 11,   57,   361,   2763, ... [A001586]
  [3] 1, 1, 4, 19,  136,  1201,  13024, ... [A007788]
  [4] 1, 1, 5, 29,  265,  3001,  42125, ... [A144015]
  [5] 1, 1, 6, 41,  456,  6301, 108576, ... [A230134]
  [6] 1, 1, 7, 55,  721, 11761, 240247, ... [A227544]
  [7] 1, 1, 8, 71, 1072, 20161, 476288, ... [A235128]
  [8] 1, 1, 9, 89, 1521, 32401, 869049, ... [A230114]
     [A000027]  | [A187277] | [A385898].
            [A028387]   [A385897]
.
Seen as a triangle:
  [0] 1;
  [1] 1, 1;
  [2] 1, 1, 1;
  [3] 1, 1, 2,  1;
  [4] 1, 1, 3,  5,   1;
  [5] 1, 1, 4, 11,  16,    1;
  [6] 1, 1, 5, 19,  57,   61,    1;
  [7] 1, 1, 6, 29, 136,  361,  272,    1;
  [8] 1, 1, 7, 41, 265, 1201, 2763, 1385, 1;
		

Crossrefs

Programs

  • Maple
    MAX := 16: ser := n -> series((1 - sin(n*x))^(-1/n), x, MAX):
    A := (n, k) -> if n = 0 then 1 else k!*coeff(ser(n), x, k) fi:
    seq(lprint(seq(A(n, k), k = 0..8)), n = 0..8);
  • Mathematica
    T[n_, k_, m_] := T[n, k, m] =
      Which[
        n <  0 || k <  0, 0,
        n == 0 && k == 0, 1,
        k == 0, T[n - 1, n - 1, m],
        True, T[n, k - 1, m] + m*T[n - 1, n - k - 1, m]
    ];
    A[n_, k_] := T[k, k, n - k];
    Table[A[n, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

A(n, k) = T(k, k, n - k) where T(n, k, m) = T(n, k-1, m) + m * T(n-1, n-k-1, m) for k > 0, T(n, 0, m) = T(n-1, n-1, m), and T(0, 0, m) = 1.
Column n is a linear recurrence with kernel [(-1)^k*A135278(n, k), k = 0..n].
Showing 1-7 of 7 results.