cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A142459 Triangle read by rows: T(n,k) = (4n-4k+1) * T(n-1,k-1) + (4k-3) * T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 59, 59, 1, 1, 308, 1062, 308, 1, 1, 1557, 13562, 13562, 1557, 1, 1, 7806, 148527, 352612, 148527, 7806, 1, 1, 39055, 1500669, 7108915, 7108915, 1500669, 39055, 1, 1, 195304, 14482396, 123929944, 241703110, 123929944, 14482396, 195304, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

Row sums are A001813.
This is the case m=4 of a group of triangles defined by the recursion T(n,k,m) = (m*n-m*k+1) *T(n-1,k-1) + (m*k-m+1)* T(n - 1, k).

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     10,        1;
  1,     59,       59,         1;
  1,    308,     1062,       308,         1;
  1,   1557,    13562,     13562,      1557,         1;
  1,   7806,   148527,    352612,    148527,      7806,        1;
  1,  39055,  1500669,   7108915,   7108915,   1500669,    39055,      1;
  1, 195304, 14482396, 123929944, 241703110, 123929944, 14482396, 195304, 1;
		

Crossrefs

Programs

  • Maple
    A142459 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (4*n-4*k+1)*procname(n-1, k-1)+(4*k-3)*procname(n-1, k) ; end if; end proc:
    seq(seq(A142459(n, k), k=1..n), n=1..10) ; # R. J. Mathar, May 11 2012
  • Mathematica
    T[n_, 1]:= 1; T[n_, n_]:= 1; T[n_, k_]:= (4*n -4*k +1)*T[n-1, k-1] + (4*k - 3)*T[n-1, k]; Table[T[n, k], {n, 10}, {k, n}]//Flatten
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==1 or k==n): return 1
        else: return (4*k-3)* T(n-1, k) + (4*(n-k)+1)*T(n-1, k-1)
    [[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Mar 12 2020

Formula

From Peter Bala, Feb 22 2011: (Start)
E.g.f: sqrt[u^2*(1-u)*exp(2*(u+1)*t)/(exp(4*u*t)-u*exp(4*t))] = Sum_{n >= 1} R(n,u)*t^n/n! = u + (u+u^2)*t + (u+10*u^2+u^3)*t^3/3! + ....
The row polynomials R(n,u) are related to the row polynomials P(n,u) of A186492 via R(n+1,u) = (-i)^n *(1-u)^n *P(n,i*(1+u)/(1-u)), where i = sqrt(-1). (End)

Extensions

Edited by the Assoc. Eds. of the OEIS, Mar 25 2010
Edited by N. J. A. Sloane, May 11 2013

A104035 Triangle T(n,k), 0 <= k <= n, read by rows, defined by T(0,0) = 1; T(0,k) = 0 if k>0 or if k<0; T(n,k) = k*T(n-1,k-1) + (k+1)*T(n-1,k+1).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 5, 0, 6, 5, 0, 28, 0, 24, 0, 61, 0, 180, 0, 120, 61, 0, 662, 0, 1320, 0, 720, 0, 1385, 0, 7266, 0, 10920, 0, 5040, 1385, 0, 24568, 0, 83664, 0, 100800, 0, 40320, 0, 50521, 0, 408360, 0, 1023120, 0, 1028160, 0, 362880, 50521, 0, 1326122, 0, 6749040
Offset: 0

Views

Author

Philippe Deléham, Apr 06 2005

Keywords

Comments

Or, triangle of coefficients (with exponents in increasing order) in polynomials Q_n(u) defined by d^n sec x / dx^n = Q_n(tan x)*sec x.
Interpolates between factorials and Euler (or secant) numbers. Related to Springer numbers.
Companion triangles are A155100 (derivative polynomials of tangent function) and A185896 (derivative polynomials of squared secant function).
A combinatorial interpretation for the polynomial Q_n(u) as the generating function for a sign change statistic on certain types of signed permutation can be found in [Verges]. A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...,|x_n|} = {1,2,...,n}. They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube.
Let x_1,...,x_n be a signed permutation. Adjoin x_0 = 0 to the front of the permutation and x_(n+1) = (-1)^n*(n+1) to the end to form x_0,x_1,...,x_n,x_(n+1). Then x_0,x_1,...,x_n,x_(n+1) is a snake of type S(n;0) when x_0 < x_1 > x_2 < ... x_(n+1). For example, 0 3 -1 2 -4 is a snake of type S(3;0).
Let sc be the number of sign changes through a snake ... sc = #{i, 0 <= i <= n, x_i*x_(i+1) < 0}. For example, the snake 0 3 -1 2 -4 has sc = 3. The polynomial Q_n(u) is the generating function for the sign change statistic on snakes of type S(n;0): ... Q_n(u) = sum {snakes in S(n;0)} u^sc. See the example section below for the cases n = 2 and n = 3.
PRODUCTION MATRIX
Let D = subdiag(1,2,3,...) be the array with the indicated sequence on the first subdiagonal and zeros elsewhere and let C = transpose(D). The production matrix for this triangle is C+D: the first row of (C+D)^n is the n-th row of this triangle. D represents the derivative operator d/dx and C represents the operator p(x) -> x*d/dx(x*p(x)) acting on the basis monomials {x^n}n>=0. See Formula (1) below.

Examples

			The polynomials Q_0(u) through Q_6(u) (with exponents in decreasing order) are:
  1
  u
  2*u^2 + 1
  6*u^3 + 5*u
  24*u^4 + 28*u^2 + 5
  120*u^5 + 180*u^3 + 61*u
  720*u^6 + 1320*u^4 + 662*u^2 + 61
Triangle begins:
  1
  0 1
  1 0 2
  0 5 0 6
  5 0 28 0 24
  0 61 0 180 0 120
  61 0 662 0 1320 0 720
  0 1385 0 7266 0 10920 0 5040
  1385 0 24568 0 83664 0 100800 0 40320
  0 50521 0 408360 0 1023120 0 1028160 0 362880
  50521 0 1326122 0 6749040 0 13335840 0 11491200 0 3628800
  0 2702765 0 30974526 0 113760240 0 185280480 0 139708800 0 39916800
  2702765 0 98329108 0 692699304 0 1979524800 0 2739623040 0 1836172800 0 479001600
Examples of sign change statistic sc on snakes of type S(n;0)
= = = = = = = = = = = = = = = = = = = = = =
.....Snakes....# sign changes sc.......u^sc
= = = = = = = = = = = = = = = = = = = = = =
n=2
...0 1 -2 3...........2.................u^2
...0 2  1 3...........0.................1
...0 2 -1 3...........2.................u^2
yields Q_2(u) = 2*u^2 + 1.
n=3
...0 1 -2  3 -4.......3.................u^3
...0 1 -3  2 -4.......3.................u^3
...0 1 -3 -2 -4.......1.................u
...0 2  1  3 -4.......1.................u
...0 2 -1  3 -4.......3.................u^3
...0 2 -3  1 -4.......3.................u^3
...0 2 -3 -2 -4.......1.................u
...0 3  1  2 -4.......1.................u
...0 3 -1  2 -4.......3.................u^3
...0 3 -2  1 -4.......3.................u^3
...0 3 -2 -1 -4.......1.................u
yields Q_3(u) = 6*u^3 + 5*u.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see pp. 445 and 469.

Crossrefs

See A008294 for another version of this triangle.
Setting u=0,1,2,3,4 gives A000364, A001586, A156129, A156131, A156132.
Setting u=sqrt(2) gives A156134 and A156138; u=sqrt(3) gives A002437 and A002439.

Programs

Formula

T(n, n) = n!; T(n, 0) = 0 if n = 2m + 1; T(n, 0) = A000364(m) if n = 2m.
Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0).
Sum_{k>=0} T(n, k) = A001586(n): Springer numbers.
G.f.: Sum_{n >= 0} Q_n(u)*t^n/n! = 1/(cos t - u sin t).
From Peter Bala: (Start)
RECURRENCE RELATION
For n>=0,
(1)... Q_(n+1)(u) = d/du Q_n(u) + u*d/du(u*Q_n(u))
... = (1+u^2)*d/du Q_n(u) + u*Q_n(u),
with starting condition Q_0(u) = 1. Compare with Formula (4) of A186492.
RELATION WITH TYPE B EULERIAN NUMBERS
(2)... Q_n(u) = ((u+i)/2)^n*B(n,(u-i)/(u+i)), where i = sqrt(-1) and
[B(n,u)]n>=0 = [1,1+u,1+6*u+u^2,1+23*u+23*u^2+u^3,...] is the sequence of type B Eulerian polynomials (with a factor of u removed) - see A060187.
(End)
T(n,0) = abs(A122045(n)). - Reinhard Zumkeller, Apr 27 2014

Extensions

Entry revised by N. J. A. Sloane, Nov 06 2009

A144015 Expansion of e.g.f. 1/(1 - sin(4*x))^(1/4).

Original entry on oeis.org

1, 1, 5, 29, 265, 3001, 42125, 696149, 13296145, 287706481, 6959431445, 186061833869, 5448382252825, 173418192216361, 5961442393047965, 220112963745653189, 8687730877758518305, 365023930617143804641, 16266420334783460443685, 766297734521812843642109
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2008

Keywords

Comments

Row sums of A186492 - Peter Bala, Feb 22 2011.

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 29*x^3/3! + 265*x^4/4! + 3001*x^5/5! +...
log(A(x)) = x + 4*x^2/2! + 16*x^3/3! + 128*x^4/4! + 1280*x^5/5! +...
A(x)^2/A(-x)^2 = 1 + 4*x + 16*x^2/2! + 128*x^3/3! +...+ 4^n*A000111(n)*x^n/n! +...
O.g.f.: 1/(1-x - 4*1*1*x^2/(1-5*x - 4*2*3*x^2/(1-9*x - 4*3*5*x^2/(1-13*x - 4*4*7*x^2/(1-17*x - 4*5*9*x^2/(1-...)))))) [continued fraction by Sergei Gladkovskii].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-Sin[4*x])^(1/4), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cos(2*X)-sin(2*X))^(-1/2), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=exp(intformal(A^2/subst(A^2,x,-x))));n!*polcoeff(A,n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From A'(x) = A(x)^3 / A(-x)^2: */
    {a(n)=local(A=1); for(i=0, n, A=1+intformal(A^3/subst(A, x, -x)^2 +x*O(x^n) )); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* 1/sqrt(1-2*Series_Reversion(Integral 1/sqrt(1+4*x-4*x^2) dx)): */
    {a(n)=local(A=1);A=1/sqrt(1-2*serreverse(intformal(1/sqrt(1+4*x-4*x^2 +x*O(x^n)))));n!*polcoeff(A, n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a007696(n) = prod(k=0, n-1, 4*k+1);
    a(n) = sum(k=0, n, a007696(k)*(4*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025

Formula

E.g.f. A(x) satisfies:
(1) A(x) = (cos(2*x) - sin(2*x))^(-1/2).
(2) A(x)^2/A(-x)^2 = 1/cos(4*x) + tan(4*x).
(3) A(x) = exp( Integral A(x)^2/A(-x)^2 dx).
(4) A'(x) = A(x)^3/A(-x)^2 with A(0) = 1.
(5) A(x) = 1/sqrt(1 - 2*Series_Reversion( Integral 1/sqrt(1+4*x-4*x^2) dx )).
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+1) - 4*x^2*(k+1)*(2*k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 11 2013.
a(n) ~ 2^(3*n+5/4)*n^n/(exp(n)*Pi^(n+1/2)). - Vaclav Kotesovec, Jun 26 2013
a(n) = Sum_{k=0..n} A007696(k) * (4*i)^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 24 2025

A186491 Counts a family of permutations occurring in the study of squeezed states of the simple harmonic oscillator.

Original entry on oeis.org

1, 2, 28, 1112, 87568, 11447072, 2239273408, 612359887232, 223061763490048, 104399900177326592, 61049165415292607488, 43617245341775265585152, 37385513306142843500105728, 37862584188750782065354022912
Offset: 0

Views

Author

Peter Bala, Feb 22 2011

Keywords

Comments

The sequence a(n), with the convention a(0) = 1, enumerates permutations p(1)p(2)...p(4*n) in the symmetric group on 4*n letters having the following properties:
1) The permutation can be written as a product of disjoint two cycles.
2) For i = 1,...,2*n, positions 2*i-1 and 2*i are either both ascents (labeled A) or both descents (labeled D).
The set of permutations satisfying condition (1) forms a subgroup of Symm(4*n) of order A001147(4*n).
Here are some examples of permutations (written in cycle form) in Symm(8), satisfying these conditions, together with their ascent-descent labelings.
... (14)(23)(57)(68) of type AADDAADD;
... (15)(26)(37)(48) of type AAAADDDD.
Since the permutations being considered consist of disjoint 2-cycles their ascent-descent labelings must have an equal number of A's and D's.
Further examples can be found in the Example section below.
This family of permutations have arisen in the study of squeezed states
of the simple harmonic oscillator [Sukumar and Hodges].
See A186492 for a recursive triangle to compute this sequence.

Examples

			a(1)=2:
The two permutations in Symm(4) satisfying the conditions are
... (13)(24) of type AADD
... (14)(23) of type AADD.
a(2)=28:
Clearly, the ascent-descent structure of one of our permutations must start with an AA and finish with a DD so the two possible types are AAAADDDD and AADDAADD.
There are 4!=24 permutations of type AAAADDDD coming from the bijections of {1,2,3,4} onto {5,6,7,8}.
There are 2*2 = 4 permutations of the remaining type AADDAADD, namely
... (13)(24)(57)(68)
... (13)(24)(58)(67)
... (14)(23)(57)(68)
... (14)(23)(58)(67).
		

Crossrefs

Programs

  • Maple
    G:= sqrt(sec(2*x)): Gser := series(G, x = 0,32):
    seq((2*n)!*coeff(Gser,x^(2*n)), n = 1..15);
    # Alternative, using the Singh transformation 'g' from Maple in A126156:
    a := n -> (-4)^n*g(euler, 2*n);
    seq(a(n), n = 0..13);  # Peter Luschny, Sep 29 2023
  • Maxima
    a[n]:=if n=0 then 1 else sum(a[n-k]*binomial(2*n,2*k)*(k/(2*n)-1)*(-4)^k,k,1,n);
    makelist(a[n],n,0,20); /* Tani Akinari, Sep 19 2023 */

Formula

GENERATING FUNCTION
(1)... sqrt(sec(2*x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!
= 1 + 2*x^2/2! + 28*x^4/4! + 1112*x^6/6! + ....
Compare with the e.g.f. Of A000364.
O.g.f. as a continued fraction: 1/(1-2*x/(1-12*x/(1-30*x/(...-2*n*(2*n-1)*x/(1-...))))) = 1 + 2*x + 28*x^2 + 1112*x^3 + ....
From Sergei N. Gladkovskii, Oct 23 2012: (Start)
G.f.: 1/U(0) where U(k) = 1 - (4*k+1)*(4*k+2)*x/( 1 - (4*k+3)*(4*k+4)*x/U(k+1)); (continued fraction, 2-step).
G.f.: 1/S(0) where S(k) = 1 - 2*x*(16*k^2 + 4*k + 1) - 8*x^2*(k+1)*(2*k+1)*(4*k+1)*(4*k+3)/S(k+1); (continued fraction, 1-step).
(End)
Let A(x) = Sum_{n>=0} a(n)*x^n = 1/T(0) where T(k)= 1 - (2*k+1)*(2*k+2)*x^2/T(k+1) -(continued fraction, 1-step),- then sqrt(sec(2*x)) = Sum_{n>=0} a(n)*x^n/n!. - Sergei N. Gladkovskii, Oct 25 2012
G.f.: 1/S(0) where S(k)= 1 - (2*k+1)*(2*k+2)*x /S(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 26 2012
G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)*(2*k+2)/(x*(2*k+1)*(2*k+2) - 1/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013
For n > 0, a(n) = Sum_{k=1..n} a(n-k)*binomial(2*n,2*k)*(k/(2*n)-1)*(-4)^k. - Tani Akinari, Sep 19 2023.
Showing 1-4 of 4 results.