A216314
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + 2*x*A(x)^2).
Original entry on oeis.org
1, 3, 17, 121, 965, 8247, 73841, 683713, 6493145, 62898859, 619079889, 6173490857, 62239144525, 633323532783, 6496052173665, 67093423506049, 697181754821297, 7283521984427283, 76455801614169809, 806004056649062937, 8529783421905380629, 90584730265930813607
Offset: 0
G.f.: A(x) = 1 + 3*x + 17*x^2 + 121*x^3 + 965*x^4 + 8247*x^5 + 73841*x^6 +...
Related expansions.
A(x)^2 = 1 + 6*x + 43*x^2 + 344*x^3 + 2945*x^4 + 26398*x^5 + 244615*x^6 +...
A(x)^3 = 1 + 9*x + 78*x^2 + 696*x^3 + 6399*x^4 + 60321*x^5 + 580316*x^6 +...
where A(x) = 1 + A(x)*(1+2*A(x))*x + 2*A(x)^3*x^2.
The g.f. also satisfies the series:
A(x) = 1 + 3*x*A(x) + 8*x^2*A(x)^2 + 22*x^3*A(x)^3 + 60*x^4*A(x)^4 + 164*x^5*A(x)^5 + 448*x^6*A(x)^6 +...+ A028859(n)*x^n*A(x)^n +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1*2 + 1/A(x))*x*A(x) + (1*2^2 + 2^2*2/A(x) + 1/A(x)^2)*x^2*A(x)^2/2 +
(1*2^3 + 3^2*2^2/A(x) + 3^2*2/A(x)^2 + 1/A(x)^3)*x^3*A(x)^3/3 +
(1*2^4 + 4^2*2^3/A(x) + 6^2*2^2/A(x)^2 + 4^2*2/A(x)^3 + 1/A(x)^4)*x^4*A(x)^4/4 +
(1*2^5 + 5^2*2^4/A(x) + 10^2*2^3/A(x)^2 + 10^2*2^2/A(x)^3 + 5^2*2/A(x)^4 + 1/A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 3*x + 25*x^2/2 + 237*x^3/3 + 2361*x^4/4 + 24203*x^5/5 + 252757*x^6/6 + 2674185*x^7/7 + 28567105*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^n/(1-2*x-2*x^2)^n.
-
CoefficientList[1/x * InverseSeries[Series[x*(1 - 2*x - 2*x^2)/(1+x),{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + 2*x*(A+x*O(x^n))^2)); polcoeff(A, n)}
-
{a(n)=polcoeff( (1/x)*serreverse( x*(1-2*x-2*x^2)/(1+x +x*O(x^n))), n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*2^(m-j)/A^j)*x^m*A^m/m))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
A375434
Expansion of g.f. A(x) satisfying A(x) = (1 + x*A(x)) * (1 + 3*x*A(x)^2).
Original entry on oeis.org
1, 4, 31, 301, 3274, 38158, 465919, 5883040, 76189177, 1006440238, 13508178448, 183689450959, 2525336086630, 35041483528522, 490125130328455, 6902993856515389, 97814486474787898, 1393470813699724726, 19946461692566594413, 286742046721454817358, 4138001844031453456120
Offset: 0
G.f. A(x) = 1 + 4*x + 31*x^2 + 301*x^3 + 3274*x^4 + 38158*x^5 + 465919*x^6 + 5883040*x^7 + 76189177*x^8 + 1006440238*x^9 + 13508178448*x^10 + ...
where A(x) = (1 + x*A(x)) * (1 + 3*x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 4*x + 15*x^2 + 57*x^3 + 216*x^4 + 819*x^5 + 3105*x^6 + 11772*x^7 + ... + A125145(n)*x^n + ...
where B(x) = (1 + x)/(1 - 3*x - 3*x^2).
-
{a(n) = my(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + 3*x*(A+x*O(x^n))^2)); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = polcoef( (1/x)*serreverse( x*(1-3*x-3*x^2)/(1+x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^j * A^j)*x^m/m))); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
A375435
Expansion of g.f. A(x) satisfying A(x) = (1 + 3*x*A(x)) * (1 + x*A(x)^2).
Original entry on oeis.org
1, 4, 23, 167, 1370, 12066, 111399, 1063896, 10423145, 104172842, 1057938416, 10886055709, 113252336950, 1189231665334, 12588038915535, 134172815937543, 1438842536532522, 15513036330871914, 168057711839246901, 1828443841807079994, 19970180509170366264, 218877585875869278396
Offset: 0
G.f. A(x) = 1 + 4*x + 23*x^2 + 167*x^3 + 1370*x^4 + 12066*x^5 + 111399*x^6 + 1063896*x^7 + 10423145*x^8 + 104172842*x^9 + 1057938416*x^10 + ...
where A(x) = (1 + 3*x*A(x)) * (1 + x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 4*x + 7*x^2 + 19*x^3 + 40*x^4 + 97*x^5 + 217*x^6 + 508*x^7 + 1159*x^8 + ... + A006130(n+1)*x^n + ...
where B(x) = (1 + 3*x)/(1 - x - 3*x^2).
-
{a(n) = my(A=1+x); for(i=1, n, A=(1 + 3*x*A)*(1 + x*(A+x*O(x^n))^2)); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=polcoef( (1/x)*serreverse( x*(1 - x - 3*x^2)/(1+3*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^(m-j) * A^j)*x^m/m))); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
A375436
Expansion of g.f. A(x) satisfying A(x) = (1 + 2*x*A(x)) * (1 + 3*x*A(x)^2).
Original entry on oeis.org
1, 5, 46, 533, 6922, 96338, 1404796, 21184229, 327659314, 5169425894, 82866843652, 1345864066658, 22098946620580, 366245357320196, 6118363978530424, 102921394554326021, 1741855452305095618, 29637960953559091934, 506708801920060974388, 8700147627314354759030, 149957787462657877848556
Offset: 0
G.f. A(x) = 1 + 5*x + 46*x^2 + 533*x^3 + 6922*x^4 + 96338*x^5 + 1404796*x^6 + 21184229*x^7 + 327659314*x^8 + 5169425894*x^9 + 82866843652*x^10 + ...
where A(x) = (1 + 2*x*A(x)) * (1 + 3*x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 5*x + 21*x^2 + 93*x^3 + 405*x^4 + 1773*x^5 + 7749*x^6 + 33885*x^7 + ... + A154964(n+1)*x^n + ...
where B(x) = (1 + 2*x)/(1 - 3*x - 6*x^2).
-
{a(n) = my(A=1+x); for(i=1, n, A=(1 + 2*x*A)*(1 + 3*x*(A+x*O(x^n))^2)); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=polcoef( (1/x)*serreverse( x*(1 - 3*x - 6*x^2)/(1 + 2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 2^(m-j) * 3^j * A^j)*x^m/m))); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
A375437
Expansion of g.f. A(x) satisfying A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).
Original entry on oeis.org
1, 5, 41, 427, 4997, 62697, 824361, 11210331, 156371609, 2224976461, 32167995497, 471208730027, 6978452945485, 104313403711649, 1571764793999769, 23847629857934859, 364033580432140593, 5586881305151655381, 86153520326218040553, 1334246446733337499755, 20743139707001572645461
Offset: 0
G.f. A(x) = 1 + 5*x + 41*x^2 + 427*x^3 + 4997*x^4 + 62697*x^5 + 824361*x^6 + 11210331*x^7 + 156371609*x^8 + 2224976461*x^9 + 32167995497*x^10 + ...
where A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 5*x + 16*x^2 + 62*x^3 + 220*x^4 + 812*x^5 + 2944*x^6 + 10760*x^7 + ... + A307469(n)*x^n + ...
where B(x) = (1 + 3*x)/(1 - 3*x - 6*x^2).
-
{a(n) = my(A=1+x); for(i=1, n, A=(1 + 3*x*A)*(1 + 2*x*(A+x*O(x^n))^2)); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=polcoef( (1/x)*serreverse( x*(1 - 2*x - 6*x^2)/(1 + 3*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^(m-j) * 2^j * A^j)*x^m/m))); polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments