cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375435 Expansion of g.f. A(x) satisfying A(x) = (1 + 3*x*A(x)) * (1 + x*A(x)^2).

Original entry on oeis.org

1, 4, 23, 167, 1370, 12066, 111399, 1063896, 10423145, 104172842, 1057938416, 10886055709, 113252336950, 1189231665334, 12588038915535, 134172815937543, 1438842536532522, 15513036330871914, 168057711839246901, 1828443841807079994, 19970180509170366264, 218877585875869278396
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2024

Keywords

Comments

In general, if G(x) = (1 + p*x*G(x)) * (1 + q*x*G(x)^2) for fixed p and q, then
(C.1) G(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * p^(n-k) * q^k * G(x)^k ).
(C.2) G(x) = (1/x) * Series_Reversion( x/(1 + p*x) - q*x^2 ).
(C.3) x = (sqrt((p - q*y)^2 + 4*p*q*y^2) - (p + q*y))/(2*p*q*y^2), where y = G(x).

Examples

			G.f. A(x) = 1 + 4*x + 23*x^2 + 167*x^3 + 1370*x^4 + 12066*x^5 + 111399*x^6 + 1063896*x^7 + 10423145*x^8 + 104172842*x^9 + 1057938416*x^10 + ...
where A(x) = (1 + 3*x*A(x)) * (1 + x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 4*x + 7*x^2 + 19*x^3 + 40*x^4 + 97*x^5 + 217*x^6 + 508*x^7 + 1159*x^8 + ... + A006130(n+1)*x^n + ...
where B(x) = (1 + 3*x)/(1 - x - 3*x^2).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=(1 + 3*x*A)*(1 + x*(A+x*O(x^n))^2)); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoef( (1/x)*serreverse( x*(1 - x - 3*x^2)/(1+3*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^(m-j) * A^j)*x^m/m))); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f. A(x) = Sum{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = (1 + 3*x*A(x)) * (1 + x*A(x)^2).
(2) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * A(x)^k ).
(3) A(x) = (1/x) * Series_Reversion( x*(1 - x - 3*x^2)/(1 + 3*x) ).
(4) A(x) = Sum_{n>=0} A006130(n+1) * x^n * A(x)^n, where g.f. of A006130 = 1/(1 - x - 3*x^2).
(5) x = (sqrt(13*A(x)^2 - 6*A(x) + 9) - (3 + A(x)))/(6*A(x)^2).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024

A375436 Expansion of g.f. A(x) satisfying A(x) = (1 + 2*x*A(x)) * (1 + 3*x*A(x)^2).

Original entry on oeis.org

1, 5, 46, 533, 6922, 96338, 1404796, 21184229, 327659314, 5169425894, 82866843652, 1345864066658, 22098946620580, 366245357320196, 6118363978530424, 102921394554326021, 1741855452305095618, 29637960953559091934, 506708801920060974388, 8700147627314354759030, 149957787462657877848556
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2024

Keywords

Comments

In general, if G(x) = (1 + p*x*G(x)) * (1 + q*x*G(x)^2) for fixed p and q, then
(C.1) G(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * p^(n-k) * q^k * G(x)^k ).
(C.2) G(x) = (1/x) * Series_Reversion( x/(1 + p*x) - q*x^2 ).
(C.3) x = (sqrt((p - q*y)^2 + 4*p*q*y^2) - (p + q*y))/(2*p*q*y^2), where y = G(x).

Examples

			G.f. A(x) = 1 + 5*x + 46*x^2 + 533*x^3 + 6922*x^4 + 96338*x^5 + 1404796*x^6 + 21184229*x^7 + 327659314*x^8 + 5169425894*x^9 + 82866843652*x^10 + ...
where A(x) = (1 + 2*x*A(x)) * (1 + 3*x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 5*x + 21*x^2 + 93*x^3 + 405*x^4 + 1773*x^5 + 7749*x^6 + 33885*x^7 + ... + A154964(n+1)*x^n + ...
where B(x) = (1 + 2*x)/(1 - 3*x - 6*x^2).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=(1 + 2*x*A)*(1 + 3*x*(A+x*O(x^n))^2)); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoef( (1/x)*serreverse( x*(1 - 3*x - 6*x^2)/(1 + 2*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 2^(m-j) * 3^j * A^j)*x^m/m))); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f. A(x) = Sum{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = (1 + 2*x*A(x)) * (1 + 3*x*A(x)^2).
(2) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * 3^k * A(x)^k ).
(3) A(x) = (1/x) * Series_Reversion( x*(1 - 3*x - 6*x^2)/(1 + 2*x) ).
(4) A(x) = Sum_{n>=0} A154964(n+1) * x^n * A(x)^n, where g.f. of A154964 = (1 - 2*x - 4*x^2)/(1 - 3*x - 6*x^2).
(5) x = (sqrt(33*A(x)^2 - 12*A(x) + 4) - (2 + 3*A(x)))/(12*A(x)^2).
a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024

A375437 Expansion of g.f. A(x) satisfying A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).

Original entry on oeis.org

1, 5, 41, 427, 4997, 62697, 824361, 11210331, 156371609, 2224976461, 32167995497, 471208730027, 6978452945485, 104313403711649, 1571764793999769, 23847629857934859, 364033580432140593, 5586881305151655381, 86153520326218040553, 1334246446733337499755, 20743139707001572645461
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2024

Keywords

Comments

In general, if G(x) = (1 + p*x*G(x)) * (1 + q*x*G(x)^2) for fixed p and q, then
(C.1) G(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * p^(n-k) * q^k * G(x)^k ).
(C.2) G(x) = (1/x) * Series_Reversion( x/(1 + p*x) - q*x^2 ).
(C.3) x = (sqrt((p - q*y)^2 + 4*p*q*y^2) - (p + q*y))/(2*p*q*y^2), where y = G(x).

Examples

			G.f. A(x) = 1 + 5*x + 41*x^2 + 427*x^3 + 4997*x^4 + 62697*x^5 + 824361*x^6 + 11210331*x^7 + 156371609*x^8 + 2224976461*x^9 + 32167995497*x^10 + ...
where A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 5*x + 16*x^2 + 62*x^3 + 220*x^4 + 812*x^5 + 2944*x^6 + 10760*x^7 + ... + A307469(n)*x^n + ...
where B(x) = (1 + 3*x)/(1 - 3*x - 6*x^2).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=(1 + 3*x*A)*(1 + 2*x*(A+x*O(x^n))^2)); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoef( (1/x)*serreverse( x*(1 - 2*x - 6*x^2)/(1 + 3*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^(m-j) * 2^j * A^j)*x^m/m))); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f. A(x) = Sum{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).
(2) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * 2^k * A(x)^k ).
(3) A(x) = (1/x) * Series_Reversion( x*(1 - 2*x - 6*x^2)/(1 + 3*x) ).
(4) A(x) = Sum_{n>=0} A307469(n) * x^n * A(x)^n, where g.f. of A307469 = (1 + 3*x)/(1 - 3*x - 6*x^2).
(5) x = (sqrt(28*A(x)^2 - 12*A(x) + 9) - (3 + 2*A(x)))/(12*A(x)^2).
a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024
Showing 1-3 of 3 results.