A198953
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^3).
Original entry on oeis.org
1, 2, 9, 56, 400, 3095, 25240, 213633, 1859006, 16527544, 149472480, 1370794835, 12718060947, 119158146283, 1125816405458, 10714275588727, 102615375322564, 988302823695146, 9565859385140272, 93000625498797314, 907782305262566776, 8892941663606408172
Offset: 0
G.f.: A(x) = 1 + 2*x + 9*x^2 + 56*x^3 + 400*x^4 + 3095*x^5 + 25240*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 22*x^2 + 148*x^3 + 1105*x^4 + 8798*x^5 + 73196*x^6 +...
A(x)^3 = 1 + 6*x + 39*x^2 + 284*x^3 + 2223*x^4 + 18267*x^5 + 155445*x^6 +...
A(x)^4 = 1 + 8*x + 60*x^2 + 472*x^3 + 3878*x^4 + 32948*x^5 + 287300*x^6 +...
where A(x) = 1 + x*(A(x) + A(x)^3) + x^2*A(x)^4.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x + (1 + 2^2*A(x)^2 + A(x)^4)*x^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 14*x^2/2 + 122*x^3/3 + 1118*x^4/4 + 10557*x^5/5 + 101642*x^6/6 + 991916*x^7/7 +...
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF)*(1 + x*AGF^3) - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 19 2013 *)
-
a(n):=sum((sum((binomial(2*n+2*k+2,j-k)*binomial(n+2*k,k))/(k+n+1),k,0,j))*(-1)^(n-j)*binomial(2*n-j,n-j),j,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(2*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=polcoeff((1/x)*serreverse( 2*x^2*(1+x) / (1 - sqrt(1 - 4*x*(1+x)^2 +x^3*O(x^n)))),n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=(1 + x*A)*(1 + x*(A+x*O(x^n))^3));polcoeff(A,n)}
A364336
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^3).
Original entry on oeis.org
1, 2, 7, 39, 242, 1634, 11631, 85957, 653245, 5072862, 40077807, 321106623, 2602911282, 21308131235, 175909559897, 1462846379247, 12242600576066, 103035285071630, 871490142773640, 7404121610615520, 63157400073057627, 540689217572662413, 4644083121177225292
Offset: 0
-
A364336 := proc(n)
add( binomial(3*k+1,k) * binomial(3*k+1,n-k)/(3*k+1),k=0..n) ;
end proc:
seq(A364336(n),n=0..80); # R. J. Mathar, Jul 25 2023
-
nmax = 80; A[_] = 1;
Do[A[x_] = (1 + x)*(1 + x*A[x]^3) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(3*k+1, n-k)/(3*k+1));
A364337
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^4).
Original entry on oeis.org
1, 2, 9, 68, 580, 5406, 53270, 545844, 5757332, 62094217, 681653493, 7591431752, 85558696024, 974024788280, 11184192097016, 129378232148016, 1506363564912368, 17639001584452320, 207593804132718948, 2454236122156830254, 29132714097692056954, 347086786035103983446
Offset: 0
-
terms = 22; A[] = 0; Do[A[x] = (1+x)(1+x*A[x]^4) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 24 2025 *)
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(4*k+1, n-k)/(4*k+1));
A215624
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 13, 130, 1518, 19358, 261323, 3670828, 53100530, 785657529, 11834135909, 180863294507, 2797643204500, 43715591710804, 689030031494554, 10941710269299893, 174889301792724294, 2811464199460768704, 45426696813655278251
Offset: 0
G.f.: A(x) = 1 + 2*x + 13*x^2 + 130*x^3 + 1518*x^4 + 19358*x^5 +...
Related expansions.
A(x)^5 = 1 + 10*x + 105*x^2 + 1250*x^3 + 16120*x^4 + 219162*x^5 +...
A(x)^6 = 1 + 12*x + 138*x^2 + 1720*x^3 + 22803*x^4 + 315840*x^5 +...
where A(x) = 1 + x*(A(x) + A(x)^5) + x^2*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^4)*x + (1 + 2^2*A(x)^4 + A(x)^8)*x^2/2 +
(1 + 3^2*A(x)^4 + 3^2*A(x)^8 + A(x)^12)*x^3/3 +
(1 + 4^2*A(x)^4 + 6^2*A(x)^8 + 4^2*A(x)^12 + A(x)^16)*x^4/4 +
(1 + 5^2*A(x)^4 + 10^2*A(x)^8 + 10^2*A(x)^12 + 5^2*A(x)^16 + A(x)^20)*x^5/5 +...
more explicitly,
log(A(x)) = 2*x + 22*x^2/2 + 320*x^3/3 + 4886*x^4/4 + 76962*x^5/5 + 1236784*x^6/6 + 20152260*x^7/7 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*(A+x*O(x^n))^(4*j))*x^m/m))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x*A^5)+x*O(x^n)); polcoeff(A, n)}
for(n=0,21,print1(a(n),", "))
A364331
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
Offset: 0
-
A364331 := proc(n)
add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ;
end proc:
seq(A364331(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));
A364376
G.f. satisfies A(x) = (1 + x*A(x)) * (1 - x*A(x)^4).
Original entry on oeis.org
1, 0, -1, 3, -4, -9, 73, -212, 111, 1956, -10078, 21466, 29823, -418183, 1561911, -1722963, -13205004, 86962328, -232448945, -109578204, 3849218852, -17135183489, 27800381006, 113891855632, -966644138742, 3075070731677, -833503324311, -41673632701038
Offset: 0
-
a(n) = sum(k=0, n, (-1)^k*binomial(n+3*k+1, k)*binomial(n+3*k+1, n-k)/(n+3*k+1));
A216359
G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x/A(x)).
Original entry on oeis.org
1, 2, 3, 13, 32, 147, 445, 2067, 7019, 32590, 119209, 551551, 2125429, 9795863, 39221165, 180177403, 742575760, 3403131833, 14342166121, 65626369612, 281459129188, 1286834885967, 5596229192396, 25580269950635, 112492633046446, 514323765191879, 2282371511598955
Offset: 0
G.f.: A(x) = 1 + 2*x + 3*x^2 + 13*x^3 + 32*x^4 + 147*x^5 + 445*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 10*x^2 + 38*x^3 + 125*x^4 + 500*x^5 + 1839*x^6 +...
A(x)^3 = 1 + 6*x + 21*x^2 + 83*x^3 + 315*x^4 + 1269*x^5 + 5061*x^6 +...
where A(x) = (1-x^2)*A(x)^2 - x*A(x)^3 - x.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + 1/A(x)^3)*x*A(x) + (1 + 2^2/A(x)^3 + 1/A(x)^6)*x^2*A(x)^2/2 +
(1 + 3^2/A(x)^3 + 3^2/A(x)^6 + 1/A(x)^9)*x^3*A(x)^3/3 +
(1 + 4^2/A(x)^3 + 6^2/A(x)^6 + 4^2/A(x)^9 + 1/A(x)^12)*x^4*A(x)^4/4 +
(1 + 5^2/A(x)^3 + 10^2/A(x)^6 + 10^2/A(x)^9 + 5^2/A(x)^12 + 1/A(x)^15)*x^5*A(x)^5/5 +...
-
S:= series(RootOf(x+y+x^2*y^2-y^2+x*y^3, y, 1), x, 41):
seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1-x^2)*AGF^2 - x*AGF^3 - x - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A^2)*(1 + x/(A+x*O(x^n)))); polcoeff(A, n)}
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(3*j))*x^m*A^m/m))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
A364340
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^6).
Original entry on oeis.org
1, 2, 15, 179, 2502, 38262, 619991, 10459410, 181771289, 3231782239, 58505593456, 1074766446526, 19984671314164, 375414901633692, 7113886504446443, 135820770971898805, 2610186429457347486, 50452256583633573513, 980187901557594671335, 19130197594133100828170, 374894511736219913097375
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+5*k+1, k)*binomial(n+5*k+1, n-k)/(n+5*k+1));
Showing 1-8 of 8 results.
Comments