cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A274735 G.f. satisfies A(x) = (1 + x*A(x))^3 * (1 + x*A(x)^2).

Original entry on oeis.org

1, 4, 26, 210, 1901, 18445, 187524, 1971672, 21263360, 233907762, 2614446624, 29607343948, 338977591904, 3917185497535, 45629006313280, 535199773167207, 6315789123860388, 74932400322972992, 893276792585933870, 10694510040508714014, 128531711285410216883, 1550159476645634696615, 18755239991772817629972, 227577929298568261967650, 2768820313297861609739979
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2016

Keywords

Comments

More generally, if G(x) satisfies
G(x) = (1 + a*x*G(x))^m * (1 + b*x*G(x)^2), then
G(x) = (1/x) * Series_Reversion( x * (1 - b*x*(1 + a*x)^m) / (1 + a*x)^m ).

Examples

			G.f.: A(x) = 1 + 4*x + 26*x^2 + 210*x^3 + 1901*x^4 + 18445*x^5 + 187524*x^6 + 1971672*x^7 + 21263360*x^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = (1 + x*A)^3 * (1 + x*A^2) + x*O(x^n) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x*(1+x)^3)/(1+x +x^2*O(x^n) )^3 ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1/x) * Series_Reversion( x * (1 - x*(1+x)^3) / (1+x)^3 ).
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(3*n+3*k+3,n-k). - Seiichi Manyama, Jan 27 2024

A369600 Expansion of (1/x) * Series_Reversion( x * (1/(1+x)^3 - x^3) ).

Original entry on oeis.org

1, 3, 12, 56, 291, 1638, 9780, 60948, 391821, 2577575, 17256918, 117150228, 804343302, 5575177026, 38957753136, 274143594685, 1941037464402, 13818185220783, 98848503602394, 710185896393792, 5122358166219855, 37076879861508830, 269235792063692580
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x)^3-x^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n+3*k+3, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(3*n+3*k+3,n-3*k).

A274378 G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x^2*A(x)^3).

Original entry on oeis.org

1, 2, 6, 24, 111, 552, 2873, 15458, 85312, 480314, 2747845, 15928080, 93347153, 552181372, 3292571913, 19769887128, 119430685503, 725375643416, 4426786390959, 27131644746326, 166932630227613, 1030684209393288, 6383992918008611, 39657230694169284, 247008096338698523, 1542292860296588558, 9651791500807437834, 60528789932966226468, 380333245334293851637, 2394179659042901060436, 15096873553004201457425
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2016

Keywords

Examples

			 G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 111*x^4 + 552*x^5 + 2873*x^6 + 15458*x^7 + 85312*x^8 +...
such that A(x) = 1 + 2*x*A(x) + x^2*(A(x)^2 + A(x)^3) + 2*x^3*A(x)^4 + x^4*A(x)^5.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1, n, A = (1 + x*A)^2 * (1 + x^2*A^3) + x*O(x^n) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x^2*(1+x)^2)/(1+x +x^2*O(x^n) )^2 ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = (1/x) * Series_Reversion( x*(1 - x^2*(1+x)^2) / (1+x)^2 ).
G.f. satisfies: A( x*(1 - x^2*(1+x)^2)/(1+x)^2 ) = (1+x)^2/(1 - x^2*(1+x)^2).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(2*n+2*k+2,n-2*k). - Seiichi Manyama, Jan 27 2024
Showing 1-3 of 3 results.