A369617
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^3 + x) ).
Original entry on oeis.org
1, 4, 22, 146, 1079, 8525, 70468, 601816, 5268241, 47019566, 426250277, 3914020148, 36328457669, 340278596273, 3212416054283, 30534649412247, 291981031204917, 2806832429353512, 27109863184695640, 262951127248539898, 2560229132085602215
Offset: 0
-
A369617 := proc(n)
add(binomial(n+1,k) * binomial(4*n-4*k+2,n-k),k=0..n) ;
%/(n+1) ;
end proc;
seq(A369617(n),n=0..70) ; # R. J. Mathar, Jan 28 2024
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^3+x))/x)
-
a(n) = sum(k=0, n, binomial(n+1, k)*binomial(4*n-4*k+2, n-k))/(n+1);
A274379
G.f. satisfies A(x) = (1 + x*A(x))^3 * (1 + x^2*A(x)^3).
Original entry on oeis.org
1, 3, 13, 70, 429, 2842, 19794, 142758, 1056655, 7980280, 61251261, 476387379, 3746317414, 29738316330, 237968639936, 1917578268288, 15546796822656, 126728260011920, 1037987924978125, 8538459191677170, 70509828893263474, 584310452973463242, 4857624566855734836, 40501472981905806550, 338594135314564168494, 2837641019938074131463, 23835438376045780734390, 200633658871150345742269, 1692132786239339256115050, 14297391426538004065333910, 121009206594941545408186768
Offset: 0
G.f.: A(x) = 1 + 3*x + 13*x^2 + 70*x^3 + 429*x^4 + 2842*x^5 + 19794*x^6 + 142758*x^7 + 1056655*x^8 + 7980280*x^9 + ...
such that A(x) = 1 + 3*x*A(x) + x^2*(3*A(x)^2 + A(x)^3) + x^3*(A(x)^3 + 3*A(x)^4) + 3*x^4*A(x)^5 + x^5*A(x)^6.
-
{a(n) = my(A=1); for(i=1, n, A = (1 + x*A)^3 * (1 + x^2*A^3) + x*O(x^n) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x^2*(1+x)^3)/(1+x +x^2*O(x^n) )^3 ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A274734
G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x*A(x)^2).
Original entry on oeis.org
1, 3, 15, 94, 661, 4983, 39363, 321587, 2694860, 23035341, 200068651, 1760558682, 15663027711, 140648129383, 1273083938979, 11603500739475, 106404140837773, 980977232554344, 9087285865886766, 84541177049414342, 789545725457924023, 7399515198155161271, 69568021610270590583, 655960254857760518109, 6201585037793334756198, 58775103307105512895151
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 94*x^3 + 661*x^4 + 4983*x^5 + 39363*x^6 + 321587*x^7 +...
-
{a(n) = my(A=1); for(i=1,n, A = (1 + x*A)^2 * (1 + x*A^2) + x*O(x^n) ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x*(1+x)^2)/(1+x +x^2*O(x^n) )^2 ); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A369600
Expansion of (1/x) * Series_Reversion( x * (1/(1+x)^3 - x^3) ).
Original entry on oeis.org
1, 3, 12, 56, 291, 1638, 9780, 60948, 391821, 2577575, 17256918, 117150228, 804343302, 5575177026, 38957753136, 274143594685, 1941037464402, 13818185220783, 98848503602394, 710185896393792, 5122358166219855, 37076879861508830, 269235792063692580
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x)^3-x^3))/x)
-
a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n+3*k+3, n-3*k))/(n+1);
A379190
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x))^3.
Original entry on oeis.org
1, 4, 30, 304, 3557, 45150, 604222, 8393282, 119872890, 1749183075, 25964512607, 390828464403, 5951561595889, 91523131078999, 1419293428538496, 22169968253466467, 348507676062911520, 5509187208564734328, 87522347516801353980, 1396619714730284551913, 22375420057050167868366
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(3*n+6*k+3, n-k)/(n+2*k+1));
Showing 1-5 of 5 results.
Comments