A181738 T(n, k) is the coefficient of x^k of the polynomial p(n) which is defined as the scalar part of P(n) = Q(x+1, 1, 1, 1) * P(n-1) for n > 0 and P(0) = Q(1, 0, 0, 0) where Q(a, b, c, d) is a quaternion, triangle read by rows.
1, 1, 1, -2, 2, 1, -8, -6, 3, 1, -8, -32, -12, 4, 1, 16, -40, -80, -20, 5, 1, 64, 96, -120, -160, -30, 6, 1, 64, 448, 336, -280, -280, -42, 7, 1, -128, 512, 1792, 896, -560, -448, -56, 8, 1, -512, -1152, 2304, 5376, 2016, -1008, -672, -72, 9, 1, -512, -5120, -5760, 7680, 13440, 4032, -1680, -960, -90, 10, 1
Offset: 0
Examples
The list of polynomials starts 1, 1 + x, -2 + 2*x + x^2, -8 - 6*x + 3*x^2 + x^3, ... and the list of coefficients of the polynomials starts: { 1}, { 1, 1}, { -2, 2, 1}, { -8, -6, 3, 1}, { -8, -32, -12, 4, 1}, { 16, -40, -80, -20, 5, 1}, { 64, 96, -120, -160, -30, 6, 1}, { 64, 448, 336, -280, -280, -42, 7, 1}, {-128, 512, 1792, 896, -560, -448, -56, 8, 1}, {-512, -1152, 2304, 5376, 2016, -1008, -672, -72, 9, 1}, {-512, -5120, -5760, 7680, 13440, 4032, -1680, -960, -90, 10, 1}.
Links
- Peter Luschny, Rows 0..45, flattened
- Wikipedia, Quaternion
Programs
-
Mathematica
Needs["Quaternions`"] P[x_, 0 ] := Quaternion[1, 0, 0, 0]; P[x_, n_] := P[x, n] = Quaternion[x + 1, 1, 1, 1] ** P[x, n - 1]; Table[CoefficientList[P[x, n][[1]], x], {n, 0, 10}] // Flatten
-
Sage
R.
= QQ[] K = R.fraction_field() H. = QuaternionAlgebra(K, -1, -1) def Q(a, b, c, d): return H(a + b*i + c*j + d*k) @cached_function def P(n): return Q(x+1,1,1,1)*P(n-1) if n > 0 else Q(1,0,0,0) def p(n): return P(n)[0].numerator().list() flatten([p(n) for n in (0..10)]) # Kudos to William Stein, Peter Luschny, Sep 14 2018
Extensions
Edited by Peter Luschny, Sep 14 2018
Comments