A181753 Universal sequence of period 56 which contains every 3-subset of {1,2,...,8} exactly once.
1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8
Offset: 1
Examples
The period is 1356725 6823472 3578147 8245614 5712361 2467836 7134583 4681258.
Links
- G. Hurlbert, On universal cycles for k-subsets of an n-element set, SIAM J. Discrete Math., 7 (1994), 598-604.
- A. Leitner and A. Godbole, Universal cycles of classes of restricted words, Discrete Math., 310 (2010) 3303-3309.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1).
Crossrefs
Cf. A010887.
Programs
-
Haskell
a181753 n = a181753_list !! (n-1) a181753_list = concat $ iterate (map ((+ 1) . flip mod 8 . (+ 4))) [1,3,5,6,7,2,5] -- Reinhard Zumkeller, Nov 09 2014
Formula
From Chai Wah Wu, Jun 13 2020: (Start)
a(n) = a(n-1) - a(n-7) + a(n-8) - a(n-14) + a(n-15) - a(n-21) + a(n-22) - a(n-28) + a(n-29) - a(n-35) + a(n-36) - a(n-42) + a(n-43) - a(n-49) + a(n-50) for n > 50.
G.f.: x*(-8*x^49 + 3*x^48 + 3*x^47 + x^46 - 7*x^45 + 2*x^44 + 2*x^43 - 7*x^42 - 2*x^41 + 6*x^40 + 2*x^39 - 6*x^38 + 4*x^37 - 4*x^36 - 6*x^35 + x^34 + x^33 + 3*x^32 - 5*x^31 + 6*x^30 - 2*x^29 - 5*x^28 - 4*x^27 + 4*x^26 + 4*x^25 - 4*x^24 - 4*x^21 - x^20 - x^19 + 5*x^18 - 3*x^17 + 2*x^16 - 6*x^15 - 3*x^14 + 2*x^13 + 2*x^12 - 2*x^11 - 2*x^10 + 4*x^9 - 4*x^8 - 2*x^7 - 3*x^6 + 5*x^5 - x^4 - x^3 - 2*x^2 - 2*x - 1)/(x^50 - x^49 + x^43 - x^42 + x^36 - x^35 + x^29 - x^28 + x^22 - x^21 + x^15 - x^14 + x^8 - x^7 + x - 1). (End)
Comments