cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181753 Universal sequence of period 56 which contains every 3-subset of {1,2,...,8} exactly once.

Original entry on oeis.org

1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8
Offset: 1

Views

Author

Susanna Cuyler, Nov 14 2010

Keywords

Comments

Each successive block of length 7 is obtained by adding 5 mod 8 to the previous block.

Examples

			The period is 1356725 6823472 3578147 8245614 5712361 2467836 7134583 4681258.
		

Crossrefs

Cf. A010887.

Programs

  • Haskell
    a181753 n = a181753_list !! (n-1)
    a181753_list = concat $ iterate
                   (map ((+ 1) . flip mod 8 . (+ 4))) [1,3,5,6,7,2,5]
    -- Reinhard Zumkeller, Nov 09 2014

Formula

From Chai Wah Wu, Jun 13 2020: (Start)
a(n) = a(n-1) - a(n-7) + a(n-8) - a(n-14) + a(n-15) - a(n-21) + a(n-22) - a(n-28) + a(n-29) - a(n-35) + a(n-36) - a(n-42) + a(n-43) - a(n-49) + a(n-50) for n > 50.
G.f.: x*(-8*x^49 + 3*x^48 + 3*x^47 + x^46 - 7*x^45 + 2*x^44 + 2*x^43 - 7*x^42 - 2*x^41 + 6*x^40 + 2*x^39 - 6*x^38 + 4*x^37 - 4*x^36 - 6*x^35 + x^34 + x^33 + 3*x^32 - 5*x^31 + 6*x^30 - 2*x^29 - 5*x^28 - 4*x^27 + 4*x^26 + 4*x^25 - 4*x^24 - 4*x^21 - x^20 - x^19 + 5*x^18 - 3*x^17 + 2*x^16 - 6*x^15 - 3*x^14 + 2*x^13 + 2*x^12 - 2*x^11 - 2*x^10 + 4*x^9 - 4*x^8 - 2*x^7 - 3*x^6 + 5*x^5 - x^4 - x^3 - 2*x^2 - 2*x - 1)/(x^50 - x^49 + x^43 - x^42 + x^36 - x^35 + x^29 - x^28 + x^22 - x^21 + x^15 - x^14 + x^8 - x^7 + x - 1). (End)