A181777 Number of steps to reach 1 in '3x+1' (or Collatz) problem starting with the n-th Mersenne prime.
7, 16, 106, 46, 158, 224, 177, 450, 860, 1454, 1441, 1660, 6769, 8494, 17094, 29821, 30734, 43478, 55906, 60716, 129608, 134345, 153505, 265860, 293161, 312164, 598067, 1158876, 1482529, 1771117, 2906179, 10197081, 11568589, 16927967, 18807193, 40055567, 40663017, 93778449, 181209792, 282515044, 323346876, 349304386, 409093991, 438465334, 499902411, 573966881, 580260946
Offset: 1
Keywords
Examples
a(1)=7 as the first Mersenne prime is 3. So starting at 3 the steps are 10, 5, 16, 8, 4, 2, 1.
Links
- Gord Palameta, Table of n, a(n) for n = 1..48 (first 47 terms from Andrey S. Shchebetov and Sergei D. Shchebetov)
- Mersenneforum.org, Collatz "total stopping time"
- T. Ohira and H. Watanabe, A Conjecture on the Collatz-Kakutani Path Length for the Mersenne Primes, arXiv:1104.2804 [math.NT], 2011-2012.
- Gord Palameta, Table of a(n)/A000043(n) for n = 1..48
- Perig, Boutoukoat/Collatz-steps-on-large-numbers
- Martin Raab, PARI program
- Wikipedia, Collatz conjecture
Programs
-
Mathematica
collatz[k_] := (If[OddQ[k], j=3k+1, j=k/2]; j); step[m_] := (p=1; n=m; While[n!=1, (n=collatz[n]; p++)]; p-1); list = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951}; Table[step[2^s-1], {s,list}] (* warning: the list should be limited so as to run in a reasonable amount of time *)
-
PARI
\\ See Raab link. \\ Martin Raab, May 11 2023
Extensions
a(43)-a(45) from Andrey S. Shchebetov and Sergei D. Shchebetov, Sep 22 2017
Edited by N. J. A. Sloane, Sep 26 2017
a(46)-a(47) from Sergei D. Shchebetov, Apr 25 2018
a(48) from Roderick MacPhee, Oct 21 2024
Comments