A181787 Number of solutions to n^2 = a^2 + b^2 + c^2 with positive a, b, c.
0, 0, 0, 3, 0, 0, 3, 6, 0, 12, 0, 9, 3, 6, 6, 15, 0, 9, 12, 15, 0, 33, 9, 18, 3, 12, 6, 39, 6, 18, 15, 24, 0, 48, 9, 30, 12, 24, 15, 45, 0, 27, 33, 33, 9, 60, 18, 36, 3, 48, 12, 60, 6, 36, 39, 45, 6, 78, 18, 45, 15, 42, 24, 114, 0, 36, 48, 51, 9, 93, 30, 54, 12, 51, 24, 87, 15, 87, 45, 60, 0, 120, 27, 63, 33, 51, 33, 105, 9, 63, 60, 84, 18, 123, 36, 75, 3, 69, 48, 165, 12
Offset: 0
Examples
a(3)=3 because 3^2 = 1^2+2^2+2^2 = 2^2+1^2+2^2 = 2^2+2^2+1^2. - _Robert Israel_, Aug 02 2019
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
Programs
-
Maple
N:= 200: # for a(0)..a(N) A:= Array(0..N): mults:= [1,3,6]: for a from 1 while 3*a^2 <= N^2 do if a::odd then b0:= a+1; db:= 2 else b0:= a; db:= 1 fi; for b from b0 by db while a^2 + 2*b^2 <= N^2 do if (a+b)::odd then c0:= b + (b mod 2); dc:= 2 else c0:= b; dc:= 1 fi; for c from c0 by dc do v:= a^2 + b^2 + c^2; if v > N^2 then break fi; if issqr(v) then w:= sqrt(v); A[w]:= A[w]+ mults[nops({a,b,c})]; fi od od od: convert(A,list); # Robert Israel, Aug 02 2019
-
Mathematica
nn=100; t=Table[0,{nn}]; Do[n=Sqrt[a^2+b^2+c^2]; If[n<=nn && IntegerQ[n], t[[n]]++], {a,nn}, {b,nn}, {c,nn}]; Prepend[t,0]
Formula
a(n) = A063691(n^2). - Michel Marcus, Apr 25 2015
a(2*n) = a(n). - Robert Israel, Aug 02 2019
Comments