A181801 Number of divisors of n that are highly composite (A002182).
1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 3, 1, 3, 1
Offset: 1
Keywords
Examples
6 is a multiple of 3 highly composite integers (1, 2 and 6); therefore a(6) = 3. As the first comment implies, there are also a(6) = 3 values of m such that 6 sets a record for number of divisors that are multiples of m. These values of m are 1, 3 and 6. All four of 6's divisors are multiples of 1; two (namely, 3 and 6) are multiples of 3; and one (namely, 6) is a multiple of 6. Each of these totals exceeds the corresponding total for any positive integer smaller than 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
- Eric Weisstein's World of Mathematics, Highly composite number.
Crossrefs
Programs
-
PARI
v002182 = vector(128); v002182[1] = 1; \\ For memoization. A002182(n) = { my(d,k); if(v002182[n],v002182[n], k = A002182(n-1); d = numdiv(k); while(numdiv(k) <= d, k=k+1); v002182[n] = k; k); }; A261100(n) = { my(k=1); while(A002182(k)<=n,k=k+1); (k-1); }; A322586(n) = if(1==n,1,(A261100(n)-A261100(n-1))); A181801(n) = sumdiv(n,d,A322586(d)); \\ Antti Karttunen, Dec 20 2018
Formula
a(n) = Sum_{d|n} A322586(d). - Antti Karttunen, Dec 20 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A352418 = 2.132872... . - Amiram Eldar, Jan 01 2024
Comments