A350675
Numbers k such that tau(k) + tau(k+1) + tau(k+2) = 10, where tau is the number of divisors function A000005.
Original entry on oeis.org
6, 11, 13, 17, 21, 37, 57, 157, 177, 381, 501, 541, 717, 877, 1201, 1317, 1381, 1437, 1621, 1821, 2017, 2557, 2577, 2857, 2901, 3061, 3117, 3777, 4281, 4357, 4441, 4677, 4701, 5077, 5097, 5581, 5637, 5701, 5937, 6337, 6637, 6661, 6717, 6997, 7417, 8221, 8781
Offset: 1
Each of the patterns (tau(k), ..., tau(k+2)) that appears repeatedly for large k corresponds to one of the two possible orders in which the multipliers m=1..3 can appear among 3 consecutive integers of the form m*prime. E.g., k=37 begins a run of 3 consecutive integers having the form (p, 2*q, 3*r), where p, q, and r are distinct primes > 3; k=57 begins a similar run, but there the 3 consecutive integers have the form (3*p, 2*q, r).
For each of the patterns of tau values that does not occur repeatedly for large k, one or more of the three consecutive integers in k..k+2 has no prime factor > 3; in the table below, each such integer appears in parentheses in the columns on the right.
.
factorization as
# divisors of m*(prime > 3)
n a(n)=k k k+1 k+2 k k+1 k+2
- ------ --- --- --- ---- ---- ----
1 6 4 2 4 (6) q (8)
2 11 2 6 2 p (12) r
3 13 2 4 4 p 2q 3r
4 17 2 6 2 p (18) r
5 21 4 4 2 3p 2q r
6 37 2 4 4 p 2q 3r
7 57 4 4 2 3p 2q r
-
Position[Plus @@@ Partition[Array[DivisorSigma[0, #] & , 10^4], 3, 1], 10] // Flatten (* Amiram Eldar, Jan 11 2022 *)
-
isok(k) = numdiv(k) + numdiv(k+1) + numdiv(k+2) == 10; \\ Michel Marcus, Jan 16 2022
A247347
Primes p such that (p-k)/(k+1) is also prime for k = 1, 2, 3.
Original entry on oeis.org
11, 23, 719, 1439, 5639, 25799, 28319, 35879, 56039, 58679, 77279, 98999, 104759, 121559, 166919, 174599, 206639, 253679, 334319, 350159, 424079, 433439, 451679, 452759, 535919, 539159, 582719, 595319, 645839, 671039, 743279, 818999, 824039
Offset: 1
a(1) = 11 because 11, (11-1)/2 = 5, (11-2)/3 = 3 and (11-3)/4 = 2 are all primes.
-
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[(p-2)/3]&&PrimeQ[(p-3)/ 4], AppendTo[lst, p]], {n, 2*9!}]; lst
Select[Prime[Range[70000]],AllTrue[Table[(#-k)/(k+1),{k,3}],PrimeQ]&] (* Harvey P. Dale, Mar 09 2024 *)
-
isokp(v) = (type(v) == "t_INT") && isprime(v);
lista(nn) = {forprime(p=2, nn, if (isokp((p-1)/2) && isokp((p-2)/3) && isokp((p-3)/4), print1(p, ", ")););} \\ Michel Marcus, Sep 15 2014
A247348
Primes p such that (p-k)/(k+1) is also prime for k = 1, 2, 3, 4.
Original entry on oeis.org
174599, 334319, 535919, 671039, 907199, 2129399, 2298119, 3103799, 3369959, 4351199, 4598159, 5697599, 6184799, 6446159, 7224839, 7943759, 7957319, 8148839, 8346959, 8656919, 9096359, 9339119, 9463319, 9511199, 10514159, 10780559, 11816999, 12424319, 13781039
Offset: 1
-
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[(p-2)/3]&&PrimeQ[(p-3)/4]&&PrimeQ[(p-4)/5], AppendTo[lst, p]], {n, 2*9!}]; lst
Select[Prime[Range[900000]],AllTrue[Table[(#-k)/(k+1),{k,4}],PrimeQ]&] (* Harvey P. Dale, Jul 07 2025 *)
-
isokp(v) = (type(v) == "t_INT") && isprime(v);
lista(nn) = {forprime(p=2, nn, if (isokp((p-1)/2) && isokp((p-2)/3) && isokp((p-3)/4) && isokp((p-4)/5), print1(p, ", ")););} \\ Michel Marcus, Sep 15 2014
-
from _future_ import division
from sympy import prime, isprime
A247348_list = [p for p in (5*prime(n)+4 for n in range(1,10**6)) if not ((p-1) % 2 or (p-2) % 3 or (p-3) % 4) and isprime(p) and isprime((p-1)//2) and isprime((p-2)//3) and isprime((p-3)//4)] # Chai Wah Wu, Sep 18 2014
Showing 1-3 of 3 results.
Comments