A181845 Triangle read by rows: T(n,k) = max_{c in P(n,n-k+1)} lcm(c) where P(n,m) = A008284(n,m) is the number of partitions of n into m parts.
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 6, 5, 1, 2, 3, 6, 5, 6, 1, 2, 3, 6, 6, 12, 7, 1, 2, 3, 6, 6, 12, 15, 8, 1, 2, 3, 6, 6, 12, 15, 20, 9, 1, 2, 3, 6, 6, 12, 15, 30, 21, 10, 1, 2, 3, 6, 6, 12, 15, 30, 21, 30, 11, 1, 2, 3, 6, 6, 12, 15, 30, 30, 60, 35, 12
Offset: 1
Examples
[1] 1 [2] 1 2 [3] 1 2 3 [4] 1 2 3 4 [5] 1 2 3 6 5 [6] 1 2 3 6 5 6 [7] 1 2 3 6 6 12 7 [8] 1 2 3 6 6 12 15 8 [9] 1 2 3 6 6 12 15 20 9
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Programs
-
Maple
with(combstruct): a181845_row := proc(n) local k,L,l,R,part; R := NULL; for k from 1 to n do L := 0; part := iterstructs(Partition(n),size=n-k+1): # alternatively (but slower) # part := iterstructs(Composition(n), size=n-k+1): while not finished(part) do l := nextstruct(part); L := max(L,ilcm(op(l))); od; R := R,L; od; R end:
-
PARI
Row(n)={my(v=vector(n)); forpart(p=n, my(i=#p); v[i]=max(v[i], lcm(Vec(p)))); Vecrev(v)} { for(n=1, 10, print(Row(n))) } \\ Andrew Howroyd, Apr 20 2021
Extensions
Terms a(56) and beyond from Andrew Howroyd, Apr 20 2021
Comments