A181851 Triangle read by rows: T(n,k) = Sum_{c in composition(n,k)} lcm(c).
1, 2, 1, 3, 4, 1, 4, 8, 6, 1, 5, 20, 15, 8, 1, 6, 21, 50, 24, 10, 1, 7, 56, 66, 96, 35, 12, 1, 8, 60, 180, 160, 160, 48, 14, 1, 9, 96, 264, 432, 325, 244, 63, 16, 1, 10, 105, 510, 776, 892, 585, 350, 80, 18, 1, 11, 220, 567, 1704, 1835, 1668, 966, 480, 99, 20, 1
Offset: 1
Examples
[1] 1 [2] 2 1 [3] 3 4 1 [4] 4 8 6 1 [5] 5 20 15 8 1 [6] 6 21 50 24 10 1 [7] 7 56 66 96 35 12 1
Links
- Alois P. Heinz, Rows n = 1..150, flattened
Programs
-
Maple
with(combstruct): a181851_row := proc(n) local k,L,l,R,comp; R := NULL; for k from 1 to n do L := 0; comp := iterstructs(Composition(n),size=k): while not finished(comp) do l := nextstruct(comp); L := L + ilcm(op(l)); od; R := R,L; od; R end:
-
Mathematica
c[n_, k_] := Permutations /@ IntegerPartitions[n, {k}] // Flatten[#, 1]&; t[n_, k_] := Total[LCM @@@ c[n, k]]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
Comments