cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A181849 Row sums of A181851.

Original entry on oeis.org

1, 1, 3, 8, 19, 49, 112, 273, 631, 1450, 3327, 7571, 17170, 38519, 85951, 190392, 419759, 921189, 2013874, 4385889, 9516273, 20577618, 44352499, 95324853, 204307052, 436768151, 931448065, 1981879262, 4207887155, 8916102661, 18856430826, 39807226901, 83892649091
Offset: 0

Views

Author

Peter Luschny, Dec 07 2010

Keywords

Crossrefs

Programs

  • Maple
    with(combstruct):
    a181849 := proc(n) local k,L,l,comp;
    L := 1-signum(n);
    for k from 1 to n do
       comp := iterstructs(Composition(n),size=k):
       while not finished(comp) do
          l := nextstruct(comp);
          L := L + ilcm(op(l));
       od;
    od;
    L end:
    seq(a181849(n), n=0..15);
  • Mathematica
    c[n_, k_] := Permutations /@ IntegerPartitions[n, {k}] // Flatten[#, 1]&; t[n_, k_] := Total[LCM @@@ c[n, k]]; Table[Print[s = Sum[t[n, k], {k, 1, n}]]; s, {n, 1, 25}]  (* Jean-François Alcover, Feb 05 2014 *)

Extensions

a(23)-a(25) from Alois P. Heinz, Jul 29 2013
a(0), a(26)-a(32) from Alois P. Heinz, Jun 18 2024

A181850 Triangle read by rows: Partial row sums of A181851(n,k).

Original entry on oeis.org

1, 2, 3, 3, 7, 8, 4, 12, 18, 19, 5, 25, 40, 48, 49, 6, 27, 77, 101, 111, 112, 7, 63, 129, 225, 260, 272, 273, 8, 68, 248, 408, 568, 616, 630, 631, 9, 105, 369, 801, 1126, 1370, 1433, 1449, 1450, 10, 115, 625, 1401, 2293, 2878, 3228, 3308, 3326, 3327
Offset: 1

Views

Author

Peter Luschny, Dec 07 2010

Keywords

Examples

			[1]   1
[2]   2    3
[3]   3    7     8
[4]   4   12    18    19
[5]   5   25    40    48    49
[6]   6   27    77   101   111   112
[7]   7   63   129   225   260   272   273
		

Crossrefs

Programs

  • Maple
    with(combstruct):
    a181850_row := proc(n) local k,L,l,R,comp;
    R := NULL; L := 0;
    for k from 1 to n do
       comp := iterstructs(Composition(n),size=k):
       while not finished(comp) do
          l := nextstruct(comp);
          L := L + ilcm(op(l));
       od;
       R := R,L;
    od;
    R end:
  • Mathematica
    c[n_, k_] := Permutations /@ IntegerPartitions[n, {k}] // Flatten[#, 1]&; t[n_, k_] := Total[LCM @@@ c[n, k]]; Table[Print[row = Table[t[n, k], {k, 1, n}] // Accumulate]; row, {n, 1, 25}] // Flatten  (* Jean-François Alcover, Feb 05 2014 *)

A373865 Sum over all compositions of 2n into n parts of the least common multiple of the parts.

Original entry on oeis.org

1, 2, 8, 50, 160, 892, 3794, 19560, 80112, 371948, 1614598, 7180494, 30794746, 134269410, 574754496, 2471353090, 10542096528, 45057428356, 191653403306, 814082549052, 3444043955350, 14537736838038, 61174002263338, 256838845740468, 1075631257186986
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2024

Keywords

Examples

			a(3) = 50 = 2 + 6*6 + 3*4: 222, 123, 132, 213, 231, 312, 321, 114, 141, 411.
		

Crossrefs

Cf. A005430 (the same for sum), A165817 (the same for product), A181851, A260878 (the same for gcd).

Formula

a(n) = A181851(2n,n).
Showing 1-3 of 3 results.