A181865 a(1) = 1, a(2) = 2. For n >= 3, a(n) is found by concatenating the cubes of the first n-1 terms of the sequence and then dividing the resulting number by a(n-1).
1, 2, 9, 2081, 90004330561, 2081000000000008100779519733758574721
Offset: 1
Crossrefs
Programs
-
Maple
#A181865 M:=7: a:=array(1..M):s:=array(1..M): a[1]:=1:a[2]:=2: s[1]:=convert(a[1]^3,string): s[2]:=cat(s[1],convert(a[2]^3,string)): for n from 3 to M do a[n] := parse(s[n-1])/a[n-1]; s[n]:= cat(s[n-1],convert(a[n]^3,string)); end do: seq(a[n],n = 1..M);
Formula
DEFINITION
a(1) = 1, a(2) = 2, and for n >= 3
(1)... a(n) = concatenate(a(1)^3,a(2)^3,...,a(n-1)^3)/a(n-1).
RECURRENCE RELATION
For n >= 2
(2)... a(n+2) = a(n+1)^2 + 10^F(n,3)*a(n),
where F(n,3) is the Fibonacci polynomial F(n,x) evaluated at x = 3.
F(n,3) = A006190(n).
Comments