A181754 a(1) = 1, a(2) = 2. For n >= 3, a(n) is found by concatenating the first n-1 terms of the sequence and then dividing the resulting number by a(n-1).
1, 2, 6, 21, 601, 21001, 60100001, 2100100000001, 601000010000000000001, 2100100000001000000000000000000001, 6010000100000000000010000000000000000000000000000000001
Offset: 1
Crossrefs
Programs
-
Maple
#A181754 M:=11: a:=array(1..M):s:=array(1..M): a[1]:=1:a[2]:=2: s[1]:=convert(a[1],string): s[2]:=cat(s[1],convert(a[2],string)): for n from 3 to M do a[n] := parse(s[n-1])/a[n-1]; s[n]:= cat(s[n-1],convert(a[n],string)); end do: seq(a[n],n = 1..M);
Formula
DEFINITION
a(1) = 1, a(2) = 2, and for n >= 3
(1)... a(n) = concatenate(a(1),a(2),...,a(n-1))/a(n-1).
RECURRENCE RELATION
For n >= 2
(2)... a(n+2) = 10^F(n)*a(n)+1,
where F(n) = A000045(n) are the Fibonacci numbers.
For n >= 2, a(n) has F(n-1) digits.
Comments