A181867 a(1) = 2, a(2) = 1. For n >= 3, a(n) is found by concatenating the first n-1 terms of the sequence in reverse order and then dividing the resulting number by a(n-1).
2, 1, 12, 101, 10012, 10000101, 1000000010012, 100000000000010000101, 1000000000000000000001000000010012, 1000000000000000000000000000000000100000000000010000101
Offset: 1
Programs
-
Maple
#A181867 M:=10: a:=array(1..M):s:=array(1..M): a[1]:=2:a[2]:=1: s[1]:=convert(a[1],string): s[2]:=cat(convert(a[2],string),s[1]): for n from 3 to M do a[n] := parse(s[n-1])/a[n-1]; s[n]:= cat(convert(a[n],string),s[n-1]); end do: seq(a[n],n = 1..M);
Formula
DEFINITION
a(1) = 2, a(2) = 1, and for n >= 3
(1)... a(n) = concatenate(a(n-1),a(n-2),...,a(1))/a(n-1).
RECURRENCE RELATION
For n >= 2
(2)... a(n+2) = a(n) + 10^(F(n)-1),
where F(n) = A000045(n) are the Fibonacci numbers.
a(n) has F(n) digits.
Comments