A181928 Area A of the triangles such that A, the sides and two medians are integers.
1680, 6720, 15120, 26880, 42000, 60480, 82320, 107520, 136080, 168000, 203280, 221760, 241920, 283920, 329280, 378000, 430080, 485520, 544320, 606480, 672000, 740880, 813120, 887040, 888720, 967680, 1050000, 1135680, 1224720
Offset: 1
Keywords
Examples
1680 is in the sequence because the corresponding triangle (52, 102, 146) contains two integer medians 35 and 97; 221760 is in the sequence because the corresponding triangle (582, 1252, 1750) contains two integer medians 433 and 1144.
References
- Ralph H. Buchholz, On triangles with rational altitudes, angles bisectors or medians, PHD Thesis, University of Newcastle, Nov 1989.
Links
- Ralph H. Buchholz, Triangles with two integer medians
- Ralph H. Buchholz and Randall L. Rathbun, An infinite set of Heron triangles with two rational medians, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 107-115.
- Richard K. Guy, A Dozen Difficult Diophantine Dilemmas, American Mathematical Monthly 95(1988) 31-36.
- Eric Weisstein's World of Mathematics, Heronian Triangle.
Programs
-
Maple
with(numtheory):nn:=300:for a from 1 to nn do: for b from a to nn do: for c from b to nn do:p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c):if s>0 then s1:=sqrt(s): m11:=sqrt((2*b^2+2*c^2-a^2)/4): m22:=sqrt((2*c^2+2*a^2-b^2)/4): m33:=sqrt((2*a^2+2*b^2-c^2)/4):if (s1=floor(s1) and m11=floor(m11) and m22=floor(m22)) or (s1=floor(s1) and m11=floor(m11) and m33=floor(m33)) or (s1=floor(s1) and m22=floor(m22) and m33=floor(m33)) then print(s1):print(a):print(b):print(c):print(m11):print(m22):print(m33):else fi:fi:od:od:od:
-
Mathematica
nn=600; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s (s-a) (s-b) (s-c); m1=(2*b^2+2*c^2-a^2)/4; m2=(2*c^2+2*a^2-b^2)/4; m3=(2*a^2+2*b^2-c^2)/4; If[0 < area2 && (IntegerQ[Sqrt[area2]] && IntegerQ[(Sqrt[m1])] && IntegerQ[Sqrt[m2]]) || (IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[m1]] && IntegerQ[Sqrt[m3]]) || (IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[m2]] && IntegerQ[Sqrt[m3]]), AppendTo[lst,Sqrt[area2]]]], {a,nn}, {b,a}, {c,b}]; Union[lst]
Comments