A181936 Number of 5-alternating permutations.
1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300, 15775, 70500, 249250, 750751, 10006375, 97226875, 601638125, 2886735625, 11593285251, 202808749375, 2550175096250, 20163891580625, 122209131374375, 613498040952501, 13287626090593750, 205055676105734375
Offset: 0
Keywords
References
- Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- R. J. Cano, PARI Sequencer program.
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
Crossrefs
Programs
-
Maple
A181936_list := proc(dim) local E,DIM,n,k; DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1; for n from 1 to DIM do if n mod 5 = 0 then E[n,0] := 0 ; for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od; else E[0,n] := 0; for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od; fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end: A181936_list(28); # Alternatively, using an exponential generating function: A181936_list := proc(n) local H,F,i; H := (r,s) -> hypergeom(r,s/5,-(t/5)^5); F := t -> 1+(t^5*H([1],[6,7,8,9,10])+5*t^4*H([],[6,7,8,9])+20*t^3*H([],[4,6,7,8])+60*t^2*H([],[3,4,6,7])+120*t^1*H([],[2,3,4,6]))/(120*H([],[2,3,4,1])); seq(i!*coeff(series(F(t),t,n+1),t,i),i=0..n-1) end:
-
Mathematica
dim = 27; e[0, 0] = 1; e[n_ /; Mod[n, 5] == 0 && 0 <= n <= dim, 0] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] == 0 := e[k, n] = e[k, n-1] + e[k+1, n-1]; e[0, n_ /; Mod[n, 5] == 0 && 0 <= n <= dim] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] != 0 := e[k, n] = e[k-1, n] + e[k-1, n+1]; e[, ] = 0; a[0] = 1; a[n_] := e[n, 0] + e[0, n]; Table[a[n], {n, 0, dim}] (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *) b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0, Sum[b[u - j, o + j - 1, Mod[t + 1, 5]], {j, 1, u}], Sum[b[u + j - 1, o - j, Mod[t + 1, 5]], {j, 1, o}]]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *) nmax = 30; CoefficientList[Series[1 + Sum[(x^(5 - k) * HypergeometricPFQ[{1}, {6/5 - k/5, 7/5 - k/5, 8/5 - k/5, 9/5 - k/5, 2 - k/5}, -x^5/3125])/(5 - k)!, {k, 0, 4}] / HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, -x^5/3125], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)
-
Sage
@cached_function def A(m,n): if n == 0: return 1 s = -1 if m.divides(n) else 1 t = [m*k for k in (0..(n-1)//m)] return s*add(binomial(n,k)*A(m,k) for k in t) A181936 = lambda n: (-1)^int(is_odd(n//5))*A(5,n) print([A181936(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017
Comments