cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181936 Number of 5-alternating permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 20, 55, 125, 251, 2300, 15775, 70500, 249250, 750751, 10006375, 97226875, 601638125, 2886735625, 11593285251, 202808749375, 2550175096250, 20163891580625, 122209131374375, 613498040952501, 13287626090593750, 205055676105734375
Offset: 0

Views

Author

Peter Luschny, Apr 03 2012

Keywords

Comments

For an integer n>0, a permutation s = s_1...s_k is a n-alternating permutation if it has the property that s_i < s_{i+1} if and only if n divides i.

References

  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page.

Crossrefs

Number of m-alternating permutations: A000012 (m=1), A000111 (m=2), A178963 (m=3), A178964 (m=4), this sequence (m=5), A250283 (m=6), A250284 (m=7), A250285 (m=8), A250286 (m=9), A250287 (m=10).
Row n=5 of A181937.

Programs

  • Maple
    A181936_list := proc(dim) local E,DIM,n,k;
    DIM := dim-1; E := array(0..DIM, 0..DIM); E[0,0] := 1;
    for n from 1 to DIM do
    if n mod 5 = 0 then E[n,0] := 0 ;
       for k from n-1 by -1 to 0 do E[k,n-k] := E[k+1,n-k-1] + E[k,n-k-1] od;
    else E[0,n] := 0;
       for k from 1 by 1 to n do E[k,n-k] := E[k-1,n-k+1] + E[k-1,n-k] od;
    fi od; [E[0,0],seq(E[k,0]+E[0,k],k=1..DIM)] end:
    A181936_list(28);
    # Alternatively, using an exponential generating function:
    A181936_list := proc(n) local H,F,i; H := (r,s) -> hypergeom(r,s/5,-(t/5)^5);
    F := t -> 1+(t^5*H([1],[6,7,8,9,10])+5*t^4*H([],[6,7,8,9])+20*t^3*H([],[4,6,7,8])+60*t^2*H([],[3,4,6,7])+120*t^1*H([],[2,3,4,6]))/(120*H([],[2,3,4,1])); seq(i!*coeff(series(F(t),t,n+1),t,i),i=0..n-1) end:
  • Mathematica
    dim = 27; e[0, 0] = 1; e[n_ /; Mod[n, 5] == 0 && 0 <= n <= dim, 0] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] == 0 := e[k, n] = e[k, n-1] + e[k+1, n-1]; e[0, n_ /; Mod[n, 5] == 0 && 0 <= n <= dim] = 0; e[k_ /; 0 <= k <= dim, n_ /; 0 <= n <= dim] /; Mod[n+k, 5] != 0 := e[k, n] = e[k-1, n] + e[k-1, n+1]; e[, ] = 0; a[0] = 1; a[n_] := e[n, 0] + e[0, n]; Table[a[n], {n, 0, dim}] (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *)
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t == 0,
         Sum[b[u - j, o + j - 1, Mod[t + 1, 5]], {j, 1, u}],
         Sum[b[u + j - 1, o - j, Mod[t + 1, 5]], {j, 1, o}]]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 35] (* Jean-François Alcover, Apr 21 2021, after Alois P. Heinz in A250283 *)
    nmax = 30; CoefficientList[Series[1 + Sum[(x^(5 - k) * HypergeometricPFQ[{1}, {6/5 - k/5, 7/5 - k/5, 8/5 - k/5, 9/5 - k/5, 2 - k/5}, -x^5/3125])/(5 - k)!, {k, 0, 4}] / HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, -x^5/3125], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)
  • Sage
    @cached_function
    def A(m,n):
        if n == 0: return 1
        s = -1 if m.divides(n) else 1
        t = [m*k for k in (0..(n-1)//m)]
        return s*add(binomial(n,k)*A(m,k) for k in t)
    A181936 = lambda n: (-1)^int(is_odd(n//5))*A(5,n)
    print([A181936(n) for n in (0..30)]) # Peter Luschny, Jan 24 2017