cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181955 Weighted sum of all cyclic subgroups of prime order in the Alternating group.

Original entry on oeis.org

0, 0, 3, 18, 90, 390, 2205, 10878, 45318, 256350, 5530305, 55869330, 865551258, 9892489698, 78223384785, 470010394350, 24530527675230, 409760923017198, 10595007772540113, 160826214447439770, 1585844008081570650, 16787211082925012730, 1362379219330719093273
Offset: 1

Views

Author

Olivier Gérard, Apr 03 2012

Keywords

Comments

Sum of p for all p-subgroups in Alt_n.

Crossrefs

Cf. A181951 (number of such subgroups).
Cf. A181954 (symmetric case).
Cf. A001465.

Programs

  • PARI
    a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, if(p>2||k%2==0, n!/(k!*(n-k*p)!*p^k)))*p/(p-1)))} \\ Andrew Howroyd, Jul 03 2018

Formula

a(n) = A181954(n) - 2*A001465(n). - Andrew Howroyd, Jul 03 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jul 03 2018

A181966 Sum of the sizes of normalizers of all prime order cyclic subgroups of the symmetric group S_n.

Original entry on oeis.org

0, 2, 12, 72, 480, 4320, 35280, 322560, 3265920, 39916800, 479001600, 6706022400, 93405312000, 1482030950400, 24845812992000, 418455797760000, 7469435990016000, 147254595231744000, 2919482409811968000, 63255452212592640000, 1430546380807864320000
Offset: 1

Views

Author

Olivier Gérard, Apr 04 2012

Keywords

Crossrefs

Cf. A181954 for the number of such subgroups.

Programs

  • GAP
    List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( SymmetricGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( SymmetricGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
    
  • GAP
    a:=function(n) local total, perm, g, p, k;
      total:= 0; g:= SymmetricGroup(n);
      for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
         perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
         total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
      od; od;
      return total;
    end; # Andrew Howroyd, Jul 30 2018
    
  • PARI
    a(n)={n!*sum(p=2, n, if(isprime(p), n\p))} \\ Andrew Howroyd, Jul 30 2018

Formula

a(n) = n! * A013939(n). - Andrew Howroyd, Jul 30 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jul 30 2018
Showing 1-2 of 2 results.